【題目】如圖,矩形ABCD的對角線AC、BD相交于點O,DE∥AC,CE∥BD.
(1)求證:四邊形OCED為菱形;
(2)連接AE、BE,AE與BE相等嗎?請說明理由.
【答案】
(1)證明:∵DE∥AC,CE∥BD,
∴四邊形DOCE是平行四邊形,
∵矩形ABCD的對角線AC、BD相交于點O,
∴OC= AC= BD=OD,
∴四邊形OCED為菱形;
(2)解:AE=BE.
理由:∵四邊形OCED為菱形,
∴ED=CE,∴∠EDC=∠ECD,
∴∠ADE=∠BCE,
在△ADE和△BCE中,
,
∴△ADE≌△BCE(SAS),
∴AE=BE.
【解析】(1)首先利用平行四邊形的判定得出四邊形DOCE是平行四邊形,進而利用矩形的性質得出DO=CO,即可得出答案;(2)利用等腰三角形的性質以及矩形的性質得出AD=BC,∠ADE=∠BCE,進而利用全等三角形的判定得出.
【考點精析】通過靈活運用菱形的判定方法和矩形的性質,掌握任意一個四邊形,四邊相等成菱形;四邊形的對角線,垂直互分是菱形.已知平行四邊形,鄰邊相等叫菱形;兩對角線若垂直,順理成章為菱形;矩形的四個角都是直角,矩形的對角線相等即可以解答此題.
科目:初中數學 來源: 題型:
【題目】二次函數y=ax2+bx+c(a≠0)的圖象如圖,結論:①ac<0;②a﹣b+c<0;③b2﹣4ac≥0;④y隨x的增大而增大,其中正確的個數( )
A.4個
B.3個
C.2個
D.1個
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,矩形ABCD中,AB=3,AD=4,E為AB上一點,AE=1,M為射線AD上一動點,AM=a(a為大于0的常數),直線EM與直線CD交于點F,過點M作MG⊥EM,交直線BC于點G.
(1)若M為邊AD中點,求證△EFG是等腰三角形;
(2)若點G與點C重合,求線段MG的長;
(3)請用含a的代數式表示△EFG的面積S,并指出S的最小整數值.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在△ABC中,AD⊥BC于點D,BD=CD,若BC=5,AD=4,則圖中陰影部分的面積為................... ................... ................... ....... .......... ..... .......... ..... ( )
A. 5 B. 10 C. 15 D. 20
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某數學興趣小組在數學課外活動中,研究三角形和正方形的性質時,做了如下探究:在△ABC中,∠BAC=90°,AB=AC,點D為直線BC上一動點(點D不與B,C重合),以AD為邊在AD右側作正方形ADEF,連接CF.
(1)觀察猜想
如圖①,當點D在線段BC上時。
①BC與CF的位置關系為:___;
②BC,CD,CF之間的數量關系為:___;(將結論直接寫在橫線上)
(2)數學思考
如圖②,當點D在線段CB的延長線上時,結論①,②是否仍然成立?若成立,請給予證明;若不成立,請你寫出正確結論再給予證明;
(3)拓展延伸
如圖③,當點D在線段BC的延長線上時,延長BA交CF于點G,連接GE.若已知AB=,CD=BC,請求出GE的長。
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】小林在某商店購買商品A、B共三次,只有一次購買時,商品A、B同時打折,其余兩次均按標價購買,三次購買商品A、B的數量和費用如下表:
購買商品A的數量(個) | 購買商品B的數量(個) | 購買總費用(元) | |
第一次購物 | 6 | 5 | 1140 |
第二次購物 | 3 | 7 | 1110 |
第三次購物 | 9 | 8 | 1062 |
(1)小林以折扣價購買商品A、B是第次購物;
(2)求出商品A、B的標價;
(3)若商品A、B的折扣相同,問商店是打幾折出售這兩種商品的?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】在平面直角坐標系xOy中,已知一次函數y=kx+b(k≠0)的圖象過點P(1,1),與x軸交于點A,與y軸交于點B,且tan∠ABO=3,那么點A的坐標是 .
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】兩塊等腰直角三角板△ABC和△DEC如圖擺放,其中∠ACB=∠DCE=90°,F是DE的中點,H是AE的中點,G是BD的中點.
(1)如圖1,若點D、E分別在AC、BC的延長線上,通過觀察和測量,猜想FH和FG的數量關系為______和位置關系為______;
(2)如圖2,若將三角板△DEC繞著點C順時針旋轉至ACE在一條直線上時,其余條件均不變,則(1)中的猜想是否還成立,若成立,請證明,不成立請說明理由;
(3)如圖3,將圖1中的△DEC繞點C順時針旋轉一個銳角,得到圖3,(1)中的猜想還成立嗎?直接寫出結論,不用證明.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com