【題目】如圖,已知四邊形ABCD中,∠ABC=90°,∠ADC=90°,AB=6,CD=4,BC的延長線與AD的延長線交于點E.

(1)若∠A=60°,求BC的長;

(2)若sinA=,求AD的長.

(注意:本題中的計算過程和結(jié)果均保留根號)

【答案】(1)6﹣8;(2)

【解析】

試題分析:(1)根據(jù)銳角三角函數(shù)求得BE和CE的長,根據(jù)BC=BE﹣CE即可求得BC的長;(2)根據(jù)題意求得AE和DE的長,由AD=AE﹣DE即可求得AD的長.

試題解析:(1)∵∠A=60°,∠ABE=90°,AB=6,tanA=,

∴∠E=30°,BE=tan60°6=6,

又∵∠CDE=90°,CD=4,sinE=,∠E=30°,

∴CE==8,

∴BC=BE﹣CE=6﹣8;

(2))∵∠ABE=90°,AB=6,sinA==

∴設(shè)BE=4x,則AE=5x,得AB=3x,

∴3x=6,得x=2,

∴BE=8,AE=10,

∴tanE====,

解得,DE=,

∴AD=AE﹣DE=10﹣=,

即AD的長是

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABC中,AD和BE是高,ABE=45°,點F是AB的中點,AD與FE、BE分別交于點G、H,CBE=BAD.有下列結(jié)論:FD=FE;AH=2CD;BCAD=AE2;SABC=4SADF.其中正確的有

A.1個 B.2 C.3 D.4個

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知一個直角三角形紙片ACB,其中∠ACB=90°,AC=4,BC=3,E、F分別是AC、AB邊上點,連接EF.

(1)圖①,若將紙片ACB的一角沿EF折疊,折疊后點A落在AB邊上的點D處,且使S四邊形ECBF=3S△EDF,求AE的長;

(2)如圖②,若將紙片ACB的一角沿EF折疊,折疊后點A落在BC邊上的點M處,且使MF∥CA.

①試判斷四邊形AEMF的形狀,并證明你的結(jié)論;

②求EF的長;

(3)如圖③,若FE的延長線與BC的延長線交于點N,CN=1,CE=,求的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,若點A a,﹣b)在第一象限內(nèi),則點B a,b﹣3)所在的象限是(

A. 第一象限 B. 第二象限 C. 第三象限 D. 第四象限

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在¨ABCD中,過點DDE⊥AB與點E,點F在邊CD上,DF=BE,連接AF,BF

1)求證:四邊形BFDE是矩形;

2)若CF=3,BF=4,DF=5,求證:AF平分∠DAB.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】因式分解4m2﹣n2=_______

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列條件可以判定△ABC是等腰三角形的是( )

A. 三條邊長分別是5, 11,5B. 三條邊長分別是 6,6,12

C. 三條邊長分別是6,13,6D. 三條邊長分別為5,5,4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】方程2x+a﹣4=0的解是x=﹣2,則a等于( 。

A. -8 B. 0 C. 2 D. 8

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】x=2是一元二次方程x2﹣2a=0的一個根,則a=______

查看答案和解析>>

同步練習(xí)冊答案