【題目】某倉庫原有某種貨物庫存270千克,現(xiàn)規(guī)定運入為正,運出為負,一天中七次出入如表(單位:千克)

第一次

第二次

第三次

第四次

第五次

第六次

第七次

﹣30

+82

﹣19

+102

﹣96

+34

﹣28


(1)在第次紀錄時庫存最多.
(2)求最終這一天庫存增加或減少了多少?
(3)若貨物裝卸費用為每千克0.3元,問這一天需裝卸費用多少元?

【答案】
(1)四
(2)解:由(1)知最終這一天庫存為315,
∴315-270=45(千克),
答:最終這一天庫存增加了45千克.

(3)解:這一天裝卸的貨物數(shù)為:+82++102++34+=391(千克),
∴0.3×391=117.3(元).
答:這一天需裝卸費用117.3元.

【解析】解:(1)依題可得:
第一次:270+(-30)=240(千克),
第二次:240+82=322(千克),
第三次:322+(-19)=303(千克),
第四次:303+102=405(千克),
第五次:405+(-96)=309(千克),
第六次:309+34=343(千克),
第七次:343+(-28)=315(千克),
∴第四次記錄時庫存最多.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】已知點P(2x,3x-1)是平面直角坐標系上的點。

(1)若點P在第一象限的角平分線上,求x的值;

(2)若點P在第三象限,且到兩坐標軸的距離之和為11,求x的值。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在數(shù)軸上,點A表示1,現(xiàn)將點A沿x軸做如下移動,第一次點A向左移動3個單位長度到達點A1,第二次將點A1向右移動6個單位長度到達點A2,第三次將點A2向左移動9個單位長度到達點,按照這種移動規(guī)律移動下去,第n次移動到點An,如果點An與原點的距離不小于20,那么n的最小值是

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖(1),AB=4cm,AC⊥AB,BD⊥AB,AC=BD=3cm.點P在線段AB上以1cm/s的速度由點A向點B運動,同時,點Q在線段BD上由點B向點D運動.它們運動的時間為t(s).

(1)若點Q的運動速度與點P的運動速度相等,當t=1時,△ACP與△BPQ是否全等,請說明理由,并判斷此時線段PC和線段PQ的位置關系;
(2)如圖(2),將圖(1)中的“AC⊥AB,BD⊥AB”為改“∠CAB=∠DBA=60°”,其他條件不變.設點Q的運動速度為x cm/s,是否存在實數(shù)x,使得△ACP與△BPQ全等?若存在,求出相應的x、t的值;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知4×8 m×16 m=2 9,則m的值是( )

A. 1 B. 4 C. 3 D. 2

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,四邊形ABCD是正方形,直線a,b,c分別通過A、D、C三點,且a∥b∥c.若a與b之間的距離是5,b與c之間的距離是7,則正方形ABCD的面積是(

A.70
B.74
C.144
D.148

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】畢達哥拉斯學派對數(shù)的巧妙結合作了如下研究:

請在答題卡上寫出第六層各個圖形的幾何點數(shù),并歸納出第n層各個圖形的幾何點數(shù)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,△ABC中,AB=AC,∠C=30°,AB⊥AD,AD=2cm,求BC的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】貨主兩次租用某汽車運輸公司的甲,乙兩種貨車運送貨物往某地,第一次租用甲貨車2輛和乙貨車3輛共運送15.5噸貨物,第二次租用甲貨車3輛和乙貨車2輛共運送17噸貨物,兩次運輸都按貨車的最大核定載貨量剛好將貨物運送完,沒有超載.
(1)求甲,乙兩種貨車每輛最大核定載貨量是多少噸?
(2)已知租用甲種貨車運費為每輛1200元,租用乙種貨車運費為每輛800元,現(xiàn)在貨主有24噸貨物需要運送,而汽車運輸公司只有2輛甲種貨車,其它的都是乙種貨車,問有幾種租車方案?哪種方案費用較少?

查看答案和解析>>

同步練習冊答案