【題目】如圖,在RtABC中,∠C90°,AC6,ADBC,DEAB交于點F,已知AD4DF2EF,sinDAB,則線段DE_____

【答案】2

【解析】

DGBCG,則DGAC6,CGAD4,由平行線得出ADF∽△BEF,得出2,求出BEAD2,由平行線的性質(zhì)和三角函數(shù)定義求出ABC10,由勾股定理得出BC8,求出EGBCBECG2,再由勾股定理即可得出答案.

解:作DGBCG,則DGAC6CGAD4,

ADBC,

∴△ADF∽△BEF,

2,

BEAD2

ADBC,

∴∠ABC=∠DAB,

∵∠C90°

sinABCsinDAB,

ABAC×610,

BC8,

EGBCBECG8242,

DE2;

故答案為:2

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】某商店計劃購進一批、兩種型號的計算器,若購進型計算器10只和型計算器8只,共需要資金880元;若購進型計算器2只和型計算器5只,共需要資金380元.

1)求、兩種型號的計算器每只進價各是多少元?

2)該商店計劃購進這兩種型號的計算器共50只.根據(jù)市場行情,銷售一只型計算器可獲利9元,銷售一只型計算器可獲利18元.該商店希望銷售完這50只計算器,所獲利潤不少于購進總成本的25%.則該商店至少要采購型計算器多少只?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某塑料廠生產(chǎn)一種家用塑料制品,它的成本是件,售價是件,年銷售量為萬件.為了獲得更好的效益,廠家準備拿出一定的資金做廣告.根據(jù)測算,若每年投入廣告費萬元,產(chǎn)品的年銷售量將是原銷售量的倍,且之間滿足,具體數(shù)量如下表:

(萬元)

1)求的函數(shù)關(guān)系式(不要求寫出自變量的取值范圍);

2)如果把利潤看作是銷售總額減去成本費用和廣告費用,試求出年利潤(萬元)與廣告費用(萬元)的函數(shù)關(guān)系式,并計算每年投入的廣告費是多少萬元時,所獲得的利潤最大?

3)如果廠家希望年利潤(萬元)不低于萬元,請你幫助廠家確定廣告費的范圍.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,兩個等腰直角△ABC△CDE中,∠ACB=∠DCE=90°.

(1)觀察猜想如圖1,點EBC上,線段AEBD的數(shù)量關(guān)系,位置關(guān)系

(2)探究證明把△CDE繞直角頂點C旋轉(zhuǎn)到圖2的位置,(1)中的結(jié)論還成立嗎?說明理由;

(3)拓展延伸:把△CDE繞點C在平面內(nèi)自由旋轉(zhuǎn),若AC=BC=13,DE=10,當A、E、D三點在直線上時,請直接寫出AD的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,點B(12,10),過點Bx軸的垂線,垂足為A.作y軸的垂線,垂足為C.點DO出發(fā),沿y軸正方向以每秒1個單位長度運動;點EO出發(fā),沿x軸正方向以每秒3個單位長度運動;點FB出發(fā),沿BA方向以每秒2個單位長度運動.當點E運動到點A時,三點隨之停止運動,運動過程中△ODE關(guān)于直線DE的對稱圖形是△O′DE,設(shè)運動時間為t

1)用含t的代數(shù)式分別表示點E和點F的坐標;

2)若△ODE與以點AE,F為頂點的三角形相似,求t的值;

3)當t2時,求O′點在坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在RtABC中,∠A90°,AB20cmAC15cm,在這個直角三角形內(nèi)有一個內(nèi)接正方形,正方形的一邊FGBC上,另兩個頂點E、H分別在邊ABAC上.

1)求BC邊上的高;

2)求正方形EFGH的邊長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】一個不透明的口袋中裝有4個分別標有數(shù)1,2,3,4的小球,它們的形狀、大小完全相同,小紅先從口袋里隨機摸出一個小球記下數(shù)為x,小穎在剩下的3個球中隨機摸出一個小球記下數(shù)為y,這樣確定了點P的坐標(x,y).

(1)小紅摸出標有數(shù)3的小球的概率是多少?.

(2)請你用列表法或畫樹狀圖法表示出由x,y確定的點P(x,y)所有可能的結(jié)果.

(3)求點P(x,y)在函數(shù)y=﹣x+5圖象上的概率.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在中,,,點從點沿邊,勻速運動到點,過點于點,線段,,,則能夠反映之間函數(shù)關(guān)系的圖象大致是(

A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,拋物線過原點,且與軸交于點

1)求拋物線的解析式及頂點的坐標;

2)已知為拋物線上一點,連接,,,求的值;

3)在第一象限的拋物線上是否存在一點,過點軸于點,使以,三點為頂點的三角形與相似,若存在,求出滿足條件的點的坐標;若不存在,請說明理由.

查看答案和解析>>

同步練習冊答案