【題目】如圖,在△ABC中,點(diǎn)D,點(diǎn)E分別是AB,AC的中點(diǎn),點(diǎn)F是DE上一點(diǎn),∠AFC=90°,BC=10cm,AC=6cm,則DF=cm.
【答案】2
【解析】解:方法一:如圖,延長(zhǎng)AF交BC于H,
∵點(diǎn)D,點(diǎn)E分別是AB,AC的中點(diǎn),
∴DE是△ABC的中位線,
∴AF=FH,
∵∠AFC=90°,
∴CF垂直平分AH,
∴CH=AC=6cm,
∵BC=10cm,
∴BH=BC﹣CH=10﹣6=4cm,
在△ABH中,DF是中位線,
∴DF= BH= ×4=2cm;
方法二:∵點(diǎn)D,點(diǎn)E分別是AB,AC的中點(diǎn),
∴DE是△ABC的中位線,
∴DE= BC= ×10=5cm,
∵∠AFC=90°,E是AC的中點(diǎn),
∴EF= AC= ×6=3cm,
∴DF=DE﹣EF=5﹣3=2cm.
所以答案是:2.
【考點(diǎn)精析】掌握直角三角形斜邊上的中線和三角形中位線定理是解答本題的根本,需要知道直角三角形斜邊上的中線等于斜邊的一半;連接三角形兩邊中點(diǎn)的線段叫做三角形的中位線;三角形中位線定理:三角形的中位線平行于三角形的第三邊,且等于第三邊的一半.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知A、B兩地相距2.4km,甲騎車(chē)勻速?gòu)?/span>A地前往B地,如圖表示甲騎車(chē)過(guò)程中離A地的路程y(km)與他行駛所用的時(shí)間x(min)之間的關(guān)系.根據(jù)圖像解答下列問(wèn)題:
(1)甲騎車(chē)的速度是 km/min;
(2)若在甲出發(fā)時(shí),乙在甲前方0.6km處,兩人均沿同一路線同時(shí)出發(fā)勻速前往B地,在第3分鐘甲追上了乙,兩人到達(dá)B地后停止.請(qǐng)?jiān)谙旅嫱黄矫嬷苯亲鴺?biāo)系中畫(huà)出乙離A地的距離y乙(km)與所用時(shí)間x(min)的關(guān)系的大致圖像;
(3)乙在第幾分鐘到達(dá)B地?
(4)兩人在整個(gè)行駛過(guò)程中,何時(shí)相距0.2km?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某種產(chǎn)品的年產(chǎn)量不超過(guò)1 000t,該產(chǎn)品的年產(chǎn)量(t)與費(fèi)用(萬(wàn)元)之間的函數(shù)關(guān)系如圖(1);該產(chǎn)品的年銷(xiāo)售量(t)與每噸銷(xiāo)售價(jià)(萬(wàn)元)之間的函數(shù)關(guān)系如圖(2).若生產(chǎn)出的產(chǎn)品都能在當(dāng)年銷(xiāo)售完,則年產(chǎn)量為多少?lài)崟r(shí),當(dāng)年可獲得7500萬(wàn)元毛利潤(rùn)?(毛利潤(rùn)=銷(xiāo)售額﹣費(fèi)用)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,一輪船由處向處航行,在處測(cè)得處在的北偏東方向上,在海島上的觀察所測(cè)得在的南偏西方向上,在的南偏東方向.若輪船行駛到處,那么從處看,兩處的視角是多少度?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知∠BOC=60°,OF平分∠BOC.若AO⊥BO,OE平分∠AOC,則∠EOF的度數(shù)是( )
A. 45°
B. 15°
C. 30°或60°
D. 45°或15°
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1,在正方形ABCD中,E、F分別是邊AD、DC上的點(diǎn),且AF⊥BE.
(1)求證:AF=BE;
(2)如圖2,在正方形ABCD中,M、N、P、Q分別是邊AB、BC、CD、DA上的點(diǎn),且MP⊥NQ.MP與NQ是否相等?并說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示,在△ABC和△DBC中,∠ACB=∠DBC=90°,點(diǎn)E是BC的中點(diǎn),EF⊥AB,垂足為F,且AB=DE.
(1)求證:△BCD是等腰直角三角形;
(2)若BD=8厘米,求AC的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,平行四邊形ABCD的兩條對(duì)角線AC和BD相交于點(diǎn)O,并且BD=4,AC=6,BC= .
(1)AC與BD有什么位置關(guān)系?為什么?
(2)四邊形ABCD是菱形嗎?為什么.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com