【題目】如圖,在△ABC中,AB=AC,∠BAC=90°.
(1)如圖1,若直線AD與BC相交于M,過(guò)點(diǎn)B作AM的垂線,垂足為D,連接CD并延長(zhǎng)BD至E,使得DE=DC,過(guò)點(diǎn)E作EF⊥CD于F,證明:AD=EF+BD.
(2)如圖2,若直線AD與CB的延長(zhǎng)線相交于M,過(guò)點(diǎn)B作AM的垂線,垂足為D,連接CD并延長(zhǎng)BD至E,使得DE=DC,過(guò)點(diǎn)E作EF⊥CD交CD的延長(zhǎng)線于F,探究:AD、EF、BD之間的數(shù)量關(guān)系,并證明.
【答案】(1)見(jiàn)解析;(2)AD+BD=EF,理由見(jiàn)解析.
【解析】
(1)將△ABD繞點(diǎn)A逆時(shí)針?lè)较蛐D(zhuǎn)90°至△ACG,得到BD=CG,延長(zhǎng)GC交DE于點(diǎn)H,證明四邊形ADHG為正方形,則AD=GH,證明△DEF≌△DCH,得到EF=CH,則得出結(jié)論;
(2)作CN⊥AM,證明△DEF≌△CDN,得到EF=DN,證明△ADB≌△CNA.得到BD=AN.則AD+AN=DN=EF.
證明:(1)∵AB=AC,∠BAC=90°,
∴△ABC為等腰直角三角形,
如圖1,將△ABD繞點(diǎn)A逆時(shí)針?lè)较蛐D(zhuǎn)90°至△ACG,
∴BD=CG,
延長(zhǎng)GC交DE于點(diǎn)H,
∵AD⊥BE,∠DAG=∠AGC=90°,AD=AG,
∴四邊形ADHG為正方形,
∴∠DHC=90°,
∴AD=GH,
∵DE=DC,EF⊥CD,∠EDF=∠CDH,
∴△DEF≌△DCH(AAS),
∴EF=CH,
∴AD=GH=GC+CH=EF+BD;
(2)AD+BD=EF,理由如下:
作CN⊥AM,
∵AD⊥BE,
∴∠EDF+∠ADC=90°,
∵∠DCN+∠ADC=90°,
∴∠EDF=∠DCN,
∵∠F=∠DNC=90°,DE=DC,
∴△DEF≌△CDN(AAS),
∴EF=DN,
∵∠BAC=90°,
∴∠DAB+∠NAC=90°,
又∵∠DAB+∠DBA=90°,
∴∠NAC=∠DBA,
∵AB=AC,
∴△ADB≌△CNA(AAS).
∴BD=AN.
∴AD+AN=DN=EF,
∴AD+BD=EF.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,直線與軸交于點(diǎn)A,與軸交點(diǎn)C,拋物線過(guò)A,C兩點(diǎn),與x軸交于另一點(diǎn)B.
(1)求拋物線的解析式.
(2)在直線AC上方的拋物線上有一動(dòng)點(diǎn)E,連接BE,與直線AC相交于點(diǎn)F,當(dāng)時(shí),求sin∠EBA的值.
(3)點(diǎn)N是拋物線對(duì)稱軸上一點(diǎn),在(2)的條件下,若點(diǎn)E位于對(duì)稱軸左側(cè),在拋物線上是否存在一點(diǎn)M,使以M,N,E,B為頂點(diǎn)的四邊形是平行四邊形?若存在,直接寫(xiě)出點(diǎn)M的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某校為了了解學(xué)生的身高情況,隨機(jī)對(duì)該校男生、女生的身高進(jìn)行抽樣調(diào)查,已知抽取的樣本中,男生、女生的人數(shù)相同,根據(jù)所得數(shù)據(jù)繪制成下面的統(tǒng)計(jì)圖表:
組別 | A | B | C | D | E |
身高(cm) | x<150 | 150≤x<155 | 155≤x<160 | 160≤x<165 | x≥165 |
根據(jù)圖表中信息,回答下列問(wèn)題:
(1)在樣本中,男生身高的中位數(shù)落在 組(填組別序號(hào)),女生身高在B組的人數(shù)有 人;
(2)已知該校共有男生500人,女生480人,請(qǐng)估計(jì)身高在155≤x<165之間的學(xué)生約有多少人?
(3)從男生樣本的A、B兩組里,隨機(jī)安排2人參加一項(xiàng)活動(dòng),求恰好是1人在A組、1人在B組的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】生物學(xué)上研究表明:不同濃度的生長(zhǎng)素對(duì)植物的生長(zhǎng)速度影響不同,在一定范圍內(nèi),生長(zhǎng)素的濃度對(duì)植物的生長(zhǎng)速度有促進(jìn)作用,相反,在某些濃度范圍,生長(zhǎng)速度會(huì)變緩慢,甚至阻礙植物生長(zhǎng)(阻礙即植物不生長(zhǎng),甚至枯萎).小林同學(xué)在了解到這一信息后,決定研究生長(zhǎng)素濃度與茶樹(shù)生長(zhǎng)速度的關(guān)系,設(shè)生長(zhǎng)素濃度為x克/升,生長(zhǎng)速度為y毫米/天,當(dāng)x超過(guò)4時(shí),茶樹(shù)的生長(zhǎng)速度y與生長(zhǎng)素x濃度滿足關(guān)系式:.實(shí)驗(yàn)數(shù)據(jù)如下表,當(dāng)生長(zhǎng)速度為0時(shí),實(shí)驗(yàn)結(jié)束.
x | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
y | 2 | 4 | 6 | 8 | 10 | 9 | 7 | 4 | 0 |
(1)如圖,建立平面直角坐標(biāo)系xOy,描出表中各對(duì)對(duì)應(yīng)值為坐標(biāo)的點(diǎn),畫(huà)出該函數(shù)圖象;
(2)根據(jù)上述表格,求出整個(gè)實(shí)驗(yàn)過(guò)程中y與x的函數(shù)關(guān)系式,并寫(xiě)出自變量x的取值范圍;
(3)結(jié)合畫(huà)出的函數(shù)圖象,寫(xiě)出該函數(shù)的一條性質(zhì): ;
(4)若直線y=kx+3與上述函數(shù)圖象有2個(gè)交點(diǎn),則k的取值范圍是: .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,點(diǎn),y是關(guān)于的二次函數(shù),拋物線經(jīng)過(guò)點(diǎn).拋物線經(jīng)過(guò)點(diǎn)拋物線經(jīng)過(guò)點(diǎn)拋物線經(jīng)過(guò)點(diǎn)則下列判斷:
①四條拋物線的開(kāi)口方向均向下;
②當(dāng)時(shí),四條拋物線表達(dá)式中的均隨的增大而增大;
③拋物線的頂點(diǎn)在拋物線頂點(diǎn)的上方;
④拋物線與軸交點(diǎn)在點(diǎn)的上方.
其中正確的是
A.①②④B.①③④
C.①②③D.②③④
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某校為了解九年級(jí)學(xué)生新冠疫情防控期間每天居家體育活動(dòng)的時(shí)間(單位:),在網(wǎng)上隨機(jī)調(diào)查了該校九年級(jí)部分學(xué)生.根據(jù)調(diào)查結(jié)果,繪制出如下的統(tǒng)計(jì)圖1和圖2.請(qǐng)根據(jù)相關(guān)信息,解答下列問(wèn)題:
(1)本次接受調(diào)查的初中學(xué)生人數(shù)為________,圖①中的值為________;
(2)這組數(shù)據(jù)的平均數(shù)是________,眾數(shù)是________,中位數(shù)是________;
(3)根據(jù)統(tǒng)計(jì)的這組每天居家體育活動(dòng)時(shí)間的樣本數(shù)據(jù),估計(jì)該校500名九年級(jí)學(xué)生居家期間每天體育活動(dòng)時(shí)間大于的學(xué)生人數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖①,在正方形ABCD中,點(diǎn)P沿邊DA從點(diǎn)D開(kāi)始向點(diǎn)A以1cm/s的速度移動(dòng);同時(shí),點(diǎn)Q沿邊AB、BC從點(diǎn)A開(kāi)始向點(diǎn)C以2cm/s的速度移動(dòng).當(dāng)點(diǎn)P移動(dòng)到點(diǎn)A時(shí),P、Q同時(shí)停止移動(dòng).設(shè)點(diǎn)P出發(fā)xs時(shí),△PAQ的面積為ycm2,y與x的函數(shù)圖象如圖②,則線段EF所在的直線對(duì)應(yīng)的函數(shù)關(guān)系式為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在正方形ABCD中,對(duì)角線AC、BD相交于點(diǎn)O,E為OC上動(dòng)點(diǎn)(不與O、C重合),作AF⊥BE,垂足為G,分別交BC、OB于F、H,連接OG、CG.
(1)求證:AH=BE;
(2)∠AGO的度數(shù)是否為定值?說(shuō)明理由;
(3)若∠OGC=90°,BG=,求△OGC的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,是直徑,以為邊作等腰,且,與邊相交于點(diǎn),過(guò)點(diǎn)作于點(diǎn),并交的延長(zhǎng)線于點(diǎn).
(1)求證:是的切線.
(2)若,°,求由線段、及所圍成的圖形(陰影部分)面積.
(3)若,,求的長(zhǎng).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com