(2012•金牛區(qū)二模)閱讀材料:C為線段BD上一動(dòng)點(diǎn),分別過(guò)點(diǎn)B、D作AB⊥BD,ED⊥BD,連接AC、EC.設(shè)CD=x,若AB=4,DE=2,BD=8,則可用含x的代數(shù)式表示AC+CE的長(zhǎng)為
16+(8-x)2
+
4+x2
.然后利用幾何知識(shí)可知:當(dāng)x=
8
3
時(shí),AC+CE的最小值為10.根據(jù)以上閱讀材料,可構(gòu)圖求出代數(shù)式
25+(12-x)2
+
9+x2
的最小值為
4
13
4
13
分析:根據(jù)已知圖象,重新構(gòu)造直角三角形,利用三角形相似得出CD的長(zhǎng),進(jìn)而利用勾股定理得出最短路徑問(wèn)題.
解答:解:如圖所示:C為線段BD上一動(dòng)點(diǎn),分別過(guò)點(diǎn)B、D作AB⊥BD,ED⊥BD,連接AC、EC.設(shè)CD=x,
若AB=5,DE=3,BD=12,
當(dāng)A,C,E,在一條直線上,AE最短,
∵AB⊥BD,ED⊥BD,
∴AB∥DE,
∴△ABC∽EDC,
AB
DE
=
BC
CD
,
5
3
=
12-CD
CD
,
解得:DC=
9
2

即當(dāng)x=
9
2
時(shí),代數(shù)式
25+(12-x)2
+
9+x2
的最小值,
此時(shí)為:
25+(12-
9
2
) 2
+
9+ (
9
2
) 2
=
5
13
2
+
3
13
2
=4
13

故答案為:4
13
點(diǎn)評(píng):此題主要考查了求最短路線問(wèn)題,利用了數(shù)形結(jié)合的思想,求形如的式子
25+(12-x)2
+
9+x2
的最小值,可通過(guò)構(gòu)造直角三角形,利用勾股定理求解.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2012•金牛區(qū)二模)某市為解決部分市民冬季集中取暖問(wèn)題需鋪設(shè)一條長(zhǎng)3000米的管道,為盡量減少施工對(duì)交通造成的影響,實(shí)施施工時(shí)“…”,設(shè)實(shí)際每天鋪設(shè)管道x米,則可得方程
3000
x-10
-
3000
x
=15
,根據(jù)此情景,題中用“…”表示的缺失的條件應(yīng)補(bǔ)為(  )

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2012•金牛區(qū)二模)先化簡(jiǎn),再求值:(
x2+3x-6
x+2
-1) ÷
x2-4
x2+4x+4
,其中x=2+
5

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2012•金牛區(qū)二模)如圖,從⊙O外一點(diǎn)A作⊙O的切線AB、AC,切點(diǎn)分別為B、C,且⊙O的直經(jīng)BD=6,連接CD、AO、BC,且AO與BC相交于點(diǎn)E.
(1)求證:CD∥AO;
(2)設(shè)CD=x,AO=y,求y與x之間的函數(shù)關(guān)系式,并直接寫(xiě)出自變量x的取值范圍;
(3)請(qǐng)閱讀下方資源鏈接內(nèi)容.在(2)的基礎(chǔ)上,若CD、AO的長(zhǎng)分別為一元二次方程x2-(4m+1)x+4m2+2=0的兩個(gè)實(shí)數(shù)根,求AB的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2012•金牛區(qū)二模)在下列運(yùn)算中,計(jì)算正確的是( 。

查看答案和解析>>

同步練習(xí)冊(cè)答案