【題目】觀察下面的點陣圖形和與之相對應的等式,探究其中的規(guī)律:
(1)請你在④和⑤后面的橫線上分別寫出相對應的等式.
①·4×0+1=4×1-3;
② 4×1+1=4×2-3;
③ 4×2+1=4×3-3;
④ ______________;
⑤ ______________;
(2)通過猜想,寫出與第個圖形相對應的等式.
科目:初中數(shù)學 來源: 題型:
【題目】(1)如圖1,∠MAN=90°,射線AE在這個角的內(nèi)部,點B、C分別在∠MAN的邊AM、AN上,且AB=AC,CF⊥AE于點F,BD⊥AE于點D.求證:△ABD≌△CAF;
(2)如圖2,點B、C分別在∠MAN的邊AM、AN上,點E、F都在∠MAN內(nèi)部的射線AD上,∠1、∠2分別是△ABE、△CAF的外角.已知AB=AC,且∠1=∠2=∠BAC.求證:△ABE≌△CAF;
(3)如圖3,在△ABC中,AB=AC,AB>BC.點D在邊BC上,CD=2BD,點E、F在線段AD上,∠1=∠2=∠BAC.若△ABC的面積為15,求△ACF與△BDE的面積之和.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】多項式①16x2-x;②(x-1)2-4(x-1);③(x+1)2-4x(x+1)+4x2;④-4x2-1+4x分解因式后,結果中含有相同因式的是( 。
A. ①和② B. ③和④ C. ①和④ D. ②和③
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知Rt△ABC中,∠ACB=90°,CA=CB,D是AC上一點,E在BC的延長線上,且AE=BD,BD的延長線與AE交于點F.試通過觀察、測量、猜想等方法來探索BF與AE有何特殊的位置關系,并說明你猜想的正確性.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,二次函數(shù)y=ax2+bx(a≠0)的圖象經(jīng)過點A(1,4),對稱軸是直線x=﹣,線段AD平行于x軸,交拋物線于點D.在y軸上取一點C(0,2),直線AC交拋物線于點B,連結OA,OB,OD,BD.
(1)求該二次函數(shù)的解析式;
(2)求點B坐標和坐標平面內(nèi)使△EOD∽△AOB的點E的坐標;
(3)設點F是BD的中點,點P是線段DO上的動點,問PD為何值時,將△BPF沿邊PF翻折,使△BPF與△DPF重疊部分的面積是△BDP的面積的?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】閱讀下面材料并解決有關問題:我們知道: ,現(xiàn)在我們可以用這一結論來化簡含有絕對值的式子。
如化簡代數(shù)式|x+1|+|x-2|時,可令x+1=0 或 x-2=0,分別求得x=-1,x=-2(稱-1,2分別為|x+1|和|x-2|的零點值。
在有理數(shù)范圍內(nèi),零點值x=-1和x=2,可將全體有理數(shù)分成不重復且不遺漏的如下3種情況:(1)<-1;(2)-1x (3)x-2
|從而化簡式子|x+1|+|x-2|可分以下3種情況:
(1)當x<-1時,原式=-(x+1)-(x-2)=-2x+1;
(2)當-1x時,原式= x+1-(x-2) =3;
(3)當x-2時,原式=x+1+(x-2)=2x-1
綜上所述,原式=
通過以上閱讀,請你解決以下問題:“(1)化簡|x-4|-|x+2|
(2)|x|+|x+1|+|x+2|
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖1,在正方形ABCD中,E、F分別為BC、CD的中點,連接AE、BF,交點為G.
(1)求證:AE⊥BF;
(2)將△BCF沿BF對折,得到△BPF(如圖2),延長FP交BA的延長線于點Q,求sin∠BQP的值;
(3)將△ABE繞點A逆時針方向旋轉,使邊AB正好落在AE上,得到△AHM(如圖3),若AM和BF相交于點N,當正方形ABCD的邊長為4時,直接寫出四邊形GHMN的面積.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】若A(﹣3,y1)、B(0,y2)、C(2,y3)為二次函數(shù)y=(x+1)2+1的圖象上的三點,則y1、y2、y3的大小關系是( )
A.y1<y2<y3B.y2<y1<y3C.y3<y1<y2D.y1<y3<y2
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com