【題目】如圖1,在正方形ABCD中,點(diǎn)E,F(xiàn)分別是邊BC,AB上的點(diǎn),且CE=BF.連接DE,過(guò)點(diǎn)E作EG⊥DE,使EG=DE,連接FG,F(xiàn)C.
(1)請(qǐng)判斷:FG與CE的關(guān)系是___;
(2)如圖2,若點(diǎn)E,F(xiàn)分別是邊CB,BA延長(zhǎng)線上的點(diǎn),其它條件不變,(1)中結(jié)論是否仍然成立?請(qǐng)作出判斷并給予證明;
(3)如圖3,若點(diǎn)E,F(xiàn)分別是邊BC,AB延長(zhǎng)線上的點(diǎn),其它條件不變,(1)中結(jié)論是否仍然成立?請(qǐng)直接寫出你的判斷.
【答案】(1)FG=CE,F(xiàn)G∥CE;(2)成立;(3)成立.
【解析】試題分析:(1)只要證明四邊形CDGF是平行四邊形即可得出FG=CE,FG∥CE;
(2)構(gòu)造輔助線后證明△HGE≌△CED,利用對(duì)應(yīng)邊相等求證四邊形GHBF是矩形后,利用等量代換即可求出FG=C,FG∥CE;
(3)證明△CBF≌△DCE后,即可證明四邊形CEGF是平行四邊形.
試題解析:解:(1)FG=CE,FG∥CE;
(2)過(guò)點(diǎn)G作GH⊥CB的延長(zhǎng)線于點(diǎn)H.∵EG⊥DE,∴∠GEH+∠DEC=90°.∵∠GEH+∠HGE=90°,∴∠DEC=∠HE.在△HGE與△CED中,∵∠GHE=∠DCE,∠HGE=∠DEC,EG=DE,∴△HGE≌△CED(AAS),∴GH=CE,HE=CD.∵CE=BF,∴GH=BF.∵GH∥BF,∴四邊形GHBF是矩形,∴GF=BH,FG∥CH,∴FG∥CE.∵四邊形ABCD是正方形,∴CD=BC,∴HE=BC,∴HE+EB=BC+EB,∴BH=EC,∴FG=EC;
(3)∵四邊形ABCD是正方形,∴BC=CD,∠FBC=∠ECD=90°.在△CBF與△DCE中,∵BF=CE,∠FBC=∠ECD,BC=DC,∴△CBF≌△DCE(SAS),∴∠BCF=∠CDE,CF=DE.∵EG=DE,∴CF=EG.∵DE⊥EG,∴∠DEC+∠CEG=90°.∵∠CDE+∠DEC=90°,∴∠CDE=∠CEG,∴∠BCF=∠CEG,∴CF∥EG,∴四邊形CEGF平行四邊形,∴FG∥CE,FG=CE.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】(1)計(jì)算:(﹣1)2018﹣8÷(﹣2)3+4×(﹣)3;
(2)先化簡(jiǎn),再求值:3(a2b﹣2ab2)﹣(3a2b﹣2ab2),其中|a﹣1|+(b+)2=0.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】張大伯從報(bào)社以每份0.4元的價(jià)格購(gòu)進(jìn)了份報(bào)紙,以每份0.5元的價(jià)格售出了份報(bào)紙,剩余的以每份0.2元的價(jià)格退回報(bào)社,則張大伯賣報(bào)收入()元
A. 0.7b-0.6a B. 0.5b-0.2a C. 0.7b-0.6a D. 0.3b-0.2a
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示,圓的周長(zhǎng)為4個(gè)單位長(zhǎng)度,在圓的4等分點(diǎn)處標(biāo)上數(shù)字0,1,2,3,先讓圓周上數(shù)字0所對(duì)應(yīng)的點(diǎn)與數(shù)軸上的數(shù)-2所對(duì)應(yīng)的點(diǎn)重合,再讓圓沿著數(shù)軸按順時(shí)針?lè)较驖L動(dòng),那么數(shù)軸上的數(shù)-2017將與圓周上的哪個(gè)數(shù)字重合( )
A. 0 B. 1 C. 2 D. 3
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知在紙面上有一數(shù)軸(如圖),折疊紙面.例如:若數(shù)軸上數(shù)2表示的點(diǎn)與數(shù)﹣2表示的點(diǎn)重合,則數(shù)軸上數(shù)﹣4表示的點(diǎn)與數(shù)4表示的點(diǎn)重合,根據(jù)你對(duì)例題的理解,解答下列問(wèn)題:
若數(shù)軸上數(shù)﹣3表示的點(diǎn)與數(shù)1表示的點(diǎn)重合.(根據(jù)此情境解決下列問(wèn)題)
①則數(shù)軸上數(shù)3表示的點(diǎn)與數(shù)_______________表示的點(diǎn)重合.
②若點(diǎn)A到原點(diǎn)的距離是5個(gè)單位長(zhǎng)度,并且A、B兩點(diǎn)經(jīng)折疊后重合,則B點(diǎn)表示的數(shù)是_________.
③若數(shù)軸上M、N兩點(diǎn)之間的距離為2010,并且M、N兩點(diǎn)經(jīng)折疊后重合,
如果M點(diǎn)表示的數(shù)比N點(diǎn)表示的數(shù)大,則M點(diǎn)表示的數(shù)是________.則N點(diǎn)
表示的數(shù)是________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,以平行四邊形ABCD的邊CD為斜邊向內(nèi)作等腰直角△CDE,使AD=DE=CE,∠DEC=90°,且點(diǎn)E在平行四邊形內(nèi)部,連接AE、BE,則∠AEB的度數(shù)是( )
A、120° B、135° C、150° D、45°
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,拋物線 與x軸的負(fù)半軸交于點(diǎn)A,與y軸交于點(diǎn)B,連結(jié)AB.點(diǎn)C 在拋物線上,直線AC與y軸交于點(diǎn)D.
(1)求c的值及直線AC的函數(shù)表達(dá)式;
(2)點(diǎn)P在x軸的正半軸上,點(diǎn)Q在y軸正半軸上,連結(jié)PQ與直線AC交于點(diǎn)M,連結(jié)MO并延長(zhǎng)交AB于點(diǎn)N,若M為PQ的中點(diǎn).
①求證:△APM∽△AON;
②設(shè)點(diǎn)M的橫坐標(biāo)為m , 求AN的長(zhǎng)(用含m的代數(shù)式表示).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】(本題12分)如圖1,在平面直角坐標(biāo)系中,四邊形OABC各頂點(diǎn)的坐標(biāo)分別O(0,0),A(3, ),B(9,5 ),C(14,0).動(dòng)點(diǎn)P與Q同時(shí)從O點(diǎn)出發(fā),運(yùn)動(dòng)時(shí)間為t秒,點(diǎn)P沿OC方向以1單位長(zhǎng)度/秒的速度向點(diǎn)C運(yùn)動(dòng),點(diǎn)Q沿折線OAABBC運(yùn)動(dòng),在OA,AB,BC上運(yùn)動(dòng)的速度分別為3, , (單位長(zhǎng)度/秒)﹒當(dāng)P,Q中的一點(diǎn)到達(dá)C點(diǎn)時(shí),兩點(diǎn)同時(shí)停止運(yùn)動(dòng).
(1)求AB所在直線的函數(shù)表達(dá)式.
(2)如圖2,當(dāng)點(diǎn)Q在AB上運(yùn)動(dòng)時(shí),求△CPQ的面積S關(guān)于t的函數(shù)表達(dá)式及S的最大值.
(3)在P,Q的運(yùn)動(dòng)過(guò)程中,若線段PQ的垂直平分線經(jīng)過(guò)四邊形OABC的頂點(diǎn),求相應(yīng)的t值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,△ABC內(nèi)接于⊙O,AD是∠BAC的平分線,交BC于點(diǎn)M,交⊙O于點(diǎn)D.則圖中相似三角形共有( )
A.2對(duì)
B.4對(duì)
C.6對(duì)
D.8對(duì)
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com