(人教版)已知:二次函數(shù)y=x2-(m+1)x+m的圖象交x軸于A(x1,0)、B(x2,0)兩點,交y軸正半軸于點C,且x12+x22=10.
(1)求此二次函數(shù)的解析式;
(2)是否存在過點D(0,-)的直線與拋物線交于點M、N,與x軸交于點E,使得點M、N關(guān)于點E對稱?若存在,求直線MN的解析式;若不存在,請說明理由.
【答案】分析:(1)令y=0,即x2-(m+1)x+m=0,根據(jù)一元二次方程根與系數(shù)的關(guān)系及x12+x22=10,可求出m的值,再根據(jù)圖象與y軸正半軸于點C,可求出函數(shù)的解析式;
(2)根據(jù)題意,設(shè)出一次函數(shù)解析式y(tǒng)=kx-,若能求出比例系數(shù),則可證明此直線存在.
解答:解:(1)因為x12+x22=10,
所以(x1+x22-2x1x2=10,根據(jù)根與系數(shù)的關(guān)系,(m+1)2-2m=10,
所以m=3,m=-3,
又因為點C在y軸的正半軸上,
∴m=3,
∴所求拋物線的解析式為:y=x2-4x+3;

(2)過點D(0,-)的直線與拋物線交于M(XM,YM)、N(XN,YN)兩點,與x軸交于點E,使得M、N兩點關(guān)于點E對稱.
設(shè)直線MN的解析式為:y=kx-,
則有:YM+YN=0,(6分)
,
x2-4x+3=kx-
移項后合并同類項得x2-(k+4)x+=0,
∴xM+xN=4+k.
∴yM+yN=kxM-+kxN-=k(xM+xN)-5=0,
∴yM+yN=k(xM+xN)=5,
即k(k+4)-5=0,
∴k=1或k=-5.
當k=-5時,方程x2-(k+4)x+=0的判別式△<0,直線MN與拋物線無交點,
∴k=1,
∴直線MN的解析式為y=x-,
∴此時直線過一、三、四象限,與拋物線有交點;
∴存在過點D(0,)的直線與拋物線于M,N兩點,與x軸交于點E.使得M、N兩點關(guān)于點E對稱.
點評:此題巧妙利用了一元二次方程根與系數(shù)的關(guān)系.在(2)中,將直線與拋物線的交點問題轉(zhuǎn)化為根與系數(shù)的關(guān)系解答,考查了同學(xué)們的整體思維能力.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

(人教版)已知:二次函數(shù)y=x2-(m+1)x+m的圖象交x軸于A(x1,0)、B(x2,0)兩點,交y軸正半軸于點C,且x12+x22=10.
(1)求此二次函數(shù)的解析式;
(2)是否存在過點D(0,-
52
)的直線與拋物線交于點M、N,與x軸交于點E,使得點M、N關(guān)于點E對稱?若存在,求直線MN的解析式;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:第6章《二次函數(shù)》中考題集(45):6.4 二次函數(shù)的應(yīng)用(解析版) 題型:解答題

(人教版)已知:二次函數(shù)y=x2-(m+1)x+m的圖象交x軸于A(x1,0)、B(x2,0)兩點,交y軸正半軸于點C,且x12+x22=10.
(1)求此二次函數(shù)的解析式;
(2)是否存在過點D(0,-)的直線與拋物線交于點M、N,與x軸交于點E,使得點M、N關(guān)于點E對稱?若存在,求直線MN的解析式;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:第2章《二次函數(shù)》中考題集(46):2.8 二次函數(shù)的應(yīng)用(解析版) 題型:解答題

(人教版)已知:二次函數(shù)y=x2-(m+1)x+m的圖象交x軸于A(x1,0)、B(x2,0)兩點,交y軸正半軸于點C,且x12+x22=10.
(1)求此二次函數(shù)的解析式;
(2)是否存在過點D(0,-)的直線與拋物線交于點M、N,與x軸交于點E,使得點M、N關(guān)于點E對稱?若存在,求直線MN的解析式;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:第20章《二次函數(shù)和反比例函數(shù)》中考題集(41):20.5 二次函數(shù)的一些應(yīng)用(解析版) 題型:解答題

(人教版)已知:二次函數(shù)y=x2-(m+1)x+m的圖象交x軸于A(x1,0)、B(x2,0)兩點,交y軸正半軸于點C,且x12+x22=10.
(1)求此二次函數(shù)的解析式;
(2)是否存在過點D(0,-)的直線與拋物線交于點M、N,與x軸交于點E,使得點M、N關(guān)于點E對稱?若存在,求直線MN的解析式;若不存在,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案