【題目】如圖,四邊形ABCD中,ABCD,AC平分∠BAD,CEADABE

(1)求證:四邊形AECD是菱形;

(2)若點(diǎn)EAB的中點(diǎn),試判斷ABC的形狀,并說(shuō)明理由.

【答案】證明:

1∵AB∥CD,即AE∥CD,

∵CE∥AD,四邊形AECD是平行四邊形. 2

∵AC平分∠BAD,∴∠CAE∠CAD,

∵AD∥CE,∴∠ACE∠CAD,

∴∠ACE∠CAE,

∴AECE,

四邊形AECD是菱形;········· 4

2)證法一:∵EAB中點(diǎn),∴AEBE.

∵AECE,∴BECE,∴∠B∠BCE

∵∠B+∠BCA+∠BAC180°,

∴2∠BCE+2∠ACE180°∴∠BCE+∠ACE90°.

∠ACB90°,∴△ABC是直角三角形.

證法二:連DE,則DE⊥AC,且平分AC,

設(shè)DEACF,∵EAB的中點(diǎn),∴EF∥BC.

∴BC⊥AC,∴△ABC是直角三角形.······· 8

【解析】

試題(1)先根據(jù)平行四邊形的定義證得四邊形AECD是平行四邊形,根據(jù)平行線的性質(zhì)可得∠ACE∠CAD,再結(jié)合角平分線的性質(zhì)可得AECE,從而證得結(jié)論;(2)由AECE,AEBE可得BECE,即可得到∠B∠BCE,由∠B∠BCA∠BAC180可得2∠BCE2∠ACE180,即可得到結(jié)果.

1∵AB∥CD, CE∥AD

四邊形AECD是平行四邊形.

∵CE∥AD,

∴∠ACE∠CAD

∵AC平分∠BAD,

∴∠CAE∠CAD

∴∠ACE∠CAE,

∴AECE

四邊形AECD是菱形;

2∵AECEAEBE,

∴BECE

∴∠B∠BCE,

∵∠B∠BCA∠BAC180,

∴2∠BCE2∠ACE180,

∴∠BCE∠ACE90,即∠ACB90

∴△ABC是直角三角形.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖1,在△OAB中,∠OAB90,∠AOB30OB8.以OB為一邊,在△OAB外作等邊三角形OBC,DOB的中點(diǎn),連接AD并延長(zhǎng)交OCE

1】求點(diǎn)B的坐標(biāo)

2】求證:四邊形ABCE是平行四邊形;

3】如圖2,將圖1中的四邊形ABCO折疊,使點(diǎn)C與點(diǎn)A重合,折痕為FG,求OG的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,點(diǎn)P是正方形ABCD內(nèi)一點(diǎn),點(diǎn)P到點(diǎn)A,B和C的距離分別為,1,2,△ABP繞點(diǎn)B旋轉(zhuǎn)至△CBP′,連結(jié)PP′,并延長(zhǎng)BP與DC相交于點(diǎn)Q,則∠CPQ的大小為______ (度)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知直線,直線點(diǎn),交點(diǎn),是線段上的一個(gè)動(dòng)點(diǎn),

1)若點(diǎn)在線段兩點(diǎn)除外)上運(yùn)動(dòng),問(wèn),,之間的關(guān)系是什么?這種關(guān)系是否變化?

2)若點(diǎn)在線段之外時(shí),,之間的關(guān)系怎樣?說(shuō)明理由

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知直線這兩直線之間一點(diǎn).

1)如圖1,若的平分線相交于點(diǎn),若,求的度數(shù).

2)如圖2,若的平分線相交于點(diǎn),有何數(shù)量關(guān)系?并證明你的結(jié)論.

3)如圖3,若的平分線與的平分線所在的直線相交于點(diǎn),請(qǐng)直接寫(xiě)出之間的數(shù)量關(guān)系.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知在平面直角坐標(biāo)系中有三點(diǎn)、,請(qǐng)回答如下問(wèn)題:

1)在坐標(biāo)系內(nèi)描出點(diǎn)的位置:

2)求出以三點(diǎn)為頂點(diǎn)的三角形的面積;

3)在軸上是否存在點(diǎn),使以三點(diǎn)為頂點(diǎn)的三角形的面積為10,若存在,請(qǐng)直接寫(xiě)出點(diǎn)的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】王大伯幾年前承包了甲、乙兩片荒山,各栽100棵楊梅樹(shù),成活98%.現(xiàn)已掛果,經(jīng)濟(jì)效益初步顯現(xiàn),為了分析收成情況,他分別從兩山上隨意各采摘了4棵樹(shù)上的楊梅,每棵的產(chǎn)量如折線統(tǒng)計(jì)圖所示.

1)分別計(jì)算甲、乙兩山樣本的平均數(shù),并估算出甲、乙兩山楊梅的產(chǎn)量總和;

2)試通過(guò)計(jì)算說(shuō)明,哪個(gè)山上的楊梅產(chǎn)量較穩(wěn)定?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,一次函數(shù)y=ax+b(a≠0)的圖象與反比例函數(shù)y= 的圖象相交于A、B兩點(diǎn),以AB為邊,在直線AB的左側(cè)作菱形ABCD,邊BC⊥y軸于點(diǎn)E,若點(diǎn)A坐標(biāo)為(m,6),tan∠BOE= ,OE=

(1)求反比例函數(shù)和一次函數(shù)的解析式;
(2)求點(diǎn)D的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某農(nóng)業(yè)觀光園將一塊面積為的觀光園分成三個(gè)區(qū)域,分別種植甲、乙、丙三種花卉,且每平方米栽種甲株或乙株或丙株.已知區(qū)域的面積是倍,記A區(qū)域的面積為區(qū)域的面積為

花卉

項(xiàng)目

面積

/

數(shù)量

1)完成上表(結(jié)果用含的代數(shù)式表示).

2)若三種花卉共栽種

①求的值.

②若三種花卉的單價(jià)(都是整數(shù))之和為元,全部栽種共需元,求種植面積最大的花卉總價(jià).

查看答案和解析>>

同步練習(xí)冊(cè)答案