【題目】在四邊形ABCD(凸四邊形)中, AB=AD=BC,∠BAD=90°,連結(jié)對角線 AC,當(dāng)△ACD為等腰三角形時(shí),則∠BCD的度數(shù)為
【答案】135°、90°、150°
【解析】解:
∵△ACD是等腰三角形.
如圖1,當(dāng)AD=AC時(shí),
∵AB=AD=BC,
∴AB=AC=BC,
∴△ABC是正三角形,
∴∠ACB=∠BAC=60°,
∵∠BAD=90°,
∴∠CAC=90°-60°=30°,
∵AC=AD,
∴∠ACD= (180°-30°)=75°,
∴∠BCD=60°+75°=135°;
如圖2,當(dāng)AD=CD時(shí),
∵AB=AD=BC,
∴AB=AD=BC=CD,
∵∠BAD=90°,
∴四邊形ABCD是正方形,
∴∠BCD=90°;
如圖3,當(dāng)AC=CD時(shí),過點(diǎn)C作CE⊥AD于E,過點(diǎn)B作BF⊥CE于F,
∵AC=CD,CE⊥AD,
∴AE= AD,∠ACE=∠DCE.
∵∠BAD=∠AEF=∠BFE=90°,
∴四邊形ABFE是矩形,
∴BF=AE.
∵AB=AD=BC,
∴BF= BC,
∴∠BCF=30°.
∵AB∥CE,AB=BC,
∴∠ACF=∠BAC=∠BCA= ∠BCF=15°,
∴∠BCD=3∠BCA=45°.
綜上所述,∠ABC的度數(shù)為135°、90°、45°.
所以答案是:135°、90°、45°.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某體育館計(jì)劃從一家體育用品商品一次性購買若干個(gè)排球和籃球(每個(gè)排球的價(jià)格都相同,每個(gè)籃球的價(jià)格都相同),雙方洽談的信息如下:
信息一:購買1個(gè)排球和2個(gè)籃球共需210元;
信息二:購買2個(gè)排球和3個(gè)籃球共需340元;
信息三:購買排球和籃球共50個(gè),總費(fèi)用不超過3200元,且購買排球的個(gè)數(shù)少于30個(gè).
(1)每個(gè)排球和每個(gè)籃球的價(jià)格各是多少元?
(2)該體育館有幾種購買方案?應(yīng)選擇哪種購買方案可使總費(fèi)用最低?最低費(fèi)用是多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知 OD 是∠AOB 的角平分線,C 為 OD 上一點(diǎn).
(1)過點(diǎn) C 畫直線 CE∥OB,交 OA 于 E;過點(diǎn) C 畫直線 CF∥OA,交 OB 于 F;過點(diǎn) C 畫線段 CG⊥OA,垂足為 G.
(2)根據(jù)畫圖回答問題:
①線段的長度就是點(diǎn)C到OA的距離;
②比較大。篊ECG(填“>”或“=”或“<”);
③通過度量比較∠AOD與∠ECO的關(guān)系是:∠AOD∠ECO(填“>”或“=”或“<”);
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB是⊙O的直徑,C是⊙O上一點(diǎn),∠ACD=∠B,AD⊥CD.
(1)求證:CD是⊙O的切線;
(2)若AD=1,OA=2,求AC的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,一次函數(shù)y=ax+b的圖象與反比例函數(shù)(x>0)的圖象交于點(diǎn)P(m,4),與x軸交于點(diǎn)A(﹣3,0),與y軸交于點(diǎn)C,PB⊥x軸于點(diǎn)B,且AC=BC.
(1)求反比例函數(shù)與一次函數(shù)的解析式;
(2)反比例函數(shù)圖象上是否存在點(diǎn)D,使四邊形BCPD為菱形?如果存在,求出點(diǎn)D的坐標(biāo);如果不存在,說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:一次函數(shù)的圖象與反比例函數(shù)()的圖象相交于A,B兩點(diǎn)(A在B的右側(cè)).
(1)當(dāng)A(4,2)時(shí),求反比例函數(shù)的解析式及B點(diǎn)的坐標(biāo);
(2)在(1)的條件下,反比例函數(shù)圖象的另一支上是否存在一點(diǎn)P,使△PAB是以AB為直角邊的直角三角形?若存在,求出所有符合條件的點(diǎn)P的坐標(biāo);若不存在,請說明理由.
(3)當(dāng)A(a,﹣2a+10),B(b,﹣2b+10)時(shí),直線OA與此反比例函數(shù)圖象的另一支交于另一點(diǎn)C,連接BC交y軸于點(diǎn)D.若,求△ABC的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB是⊙O的直徑,點(diǎn)P在BA的延長線上,弦CD⊥AB,垂足為E,且=PEPO.
(1)求證:PC是⊙O的切線.
(2)若OE:EA=1:2,PA=6,求⊙O的半徑.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,AB=AC,以AC邊為直徑作⊙O交BC邊于點(diǎn)D,過點(diǎn)D作DE⊥AB于點(diǎn)E,ED、AC的延長線交于點(diǎn)F.
(1)求證:EF是⊙O的切線;
(2)若EB=,且sin∠CFD=,求⊙O的半徑與線段AE的長.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com