【題目】如圖所示.某校計劃將一塊形狀為銳角三角形ABC的空地進行生態(tài)環(huán)境改造.已知△ABC的邊BC120米,高AD80米.學校計劃將它分割成△AHG、△BHE、△GFC和矩形EFGH四部分(如圖).其中矩形EFGH的一邊EF在邊BC上.其余兩個頂點H、G分別在邊AB、AC上.現(xiàn)計劃在△AHG上種草,每平方米投資6元;在△BHE、△FCG上都種花,每平方米投資10元;在矩形EFGH上興建愛心魚池,每平方米投資4元.

1)當FG長為多少米時,種草的面積與種花的面積相等?

2)當矩形EFGH的邊FG為多少米時,△ABC空地改造總投資最小,最小值為多少?

【答案】140;(2FG=60時,△ABC空地改造總投資最小,最小值為26400

【解析】

1)可利用相似分別表示出相應的三角形的底與高,讓面積相等即可;

2)把相應的總投資用含x的代數(shù)式表示出后,求出二次函數(shù)的最值即可.

解:(1)設FG=x米,則AK=80x)米.

△AHG∽△ABC,BC=120,AD=80,

可得:

∴HG=,BE+FC=120﹣(=,

,

解得

FG的長為40米時,種草的面積和種花的面積相等.

2)設改造后的總投資為W元.

W=

=,

二次項系數(shù)600x≤80

x=20時,W最小=26400

答:當矩形EFGH的邊FG長為20米時,空地改造的總投資最小,最小值為26400元.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,點的坐標為,以點為圓心,以長為半徑畫弧,交直線于點,過點作軸,交直線于點,以為圓心,以長為半徑畫弧,交直線于點,過點軸,交直線于點,以點為圓心,以長為半徑畫弧,交直線于點,過點作軸交直線于點,以點為圓心,以長為半徑面弧,交直線于點,…,按照如此規(guī)律進行下去,點的坐標為__________

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】2020516日,錢塘江詩路航道全線開通,一艘游輪從杭州出發(fā)前往衢州,線路如圖1所示.當游輪到達建德境內的七里揚帆景點時,一艘貨輪沿著同樣的線路從杭州出發(fā)前往衢州.已知游輪的速度為20km/h,游輪行駛的時間記為th),兩艘輪船距離杭州的路程skm)關于th)的圖象如圖2所示(游輪在?壳昂蟮男旭偹俣炔蛔儯

1)寫出圖2C點橫坐標的實際意義,并求出游輪在七里揚帆?康臅r長.

2)若貨輪比游輪早36分鐘到達衢州.問:

①貨輪出發(fā)后幾小時追上游輪?

②游輪與貨輪何時相距12km?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】為了傳承優(yōu)秀傳統(tǒng)文化,某校舉行“經(jīng)典誦讀”比賽,誦讀材料有:A《唐詩》、B《宋詞》、C《論語》.將AB、C這三個字母分別寫在3張完全相同的不透明卡片的正面上,把這3張卡片背面朝上洗勻后放在桌面上.小紅和小亮參加誦讀比賽,比賽時小紅先從中隨機抽取一張卡片,記錄下卡片上的內容,放回后洗勻,再由小亮從中隨機抽取一張卡片,選手按各自抽取的卡片上的內容進行比賽.

1)小紅誦讀《論語》的概率是   ;

2)請用列表法或畫樹狀圖的方法,求小紅和小亮誦讀兩個相同材料的概率.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,圓桌正上方的燈泡O發(fā)出的光線照射桌面后,在地面上形成圓形陰影.已知桌面的直徑為1.2m,桌面距離地面1m,若燈泡O距離地面3m,則地面上陰影部分的面積為(  )

A.0.36πm2B.0.81πm2C.1.44πm2D.3.24πm2

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某校組建了書法、音樂、美術、舞蹈、演講5個社團,隨機調查了部分學生.被調查學生每人都參加且只參加了其中一個社團活動,并將調查結果制成了如圖兩幅不完整的統(tǒng)計圖,在扇形統(tǒng)計圖中,“音樂”所對應的扇形圓心角度數(shù)是( )度.

A.25%B.25C.60D.90

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面立角坐標系中,反比例函數(shù)yk≠0x0)與一次函數(shù)yax+b的圖象交于點A(3,1)、B(m,3).點C的坐標為(10),連接AC,BC

1)求反比例函數(shù)和一次函數(shù)的表達式;

2)當x0時,直接寫出不等式≥ax+b的解集   

3)若點My軸的正半軸上的動點,當ACM是直角三角形時,直接寫出點M的坐標   

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】定義:在平面直角坐標系中,點的橫、縱坐標的絕對值之和叫做點的勾股值,記.若拋物線與直線只有一個交點,已知點在第一象限,且,令,則的取值范圍為(

A.B.

C.D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,拋物線經(jīng)過原點和點,頂點為,拋物線與拋物線關于原點對稱.

1)求拋物線的函數(shù)表達式及點的坐標;

2)已知點、在拋物線上的對應點分別為的對稱軸交軸于點,則拋物線的對稱軸上是否存在點,使得以、、為頂點的三角形與相似?若存在,請求出點的坐標;若不存在,請說明理由.

查看答案和解析>>

同步練習冊答案