精英家教網 > 初中數學 > 題目詳情
21、已知:如圖在平行四邊形ABCD中,過對角線BD的中點O作直線EF分別交DA的延長線、AB、DC、BC的延長線于點E、M、N、F.
(1)觀察圖形并找出一對全等三角形:△
≌△
,請加以證明;
(2)在(1)中你所找出的一對全等三角形,其中一個三角形可由另一個三角形經過怎樣的變換得到?
分析:(1)本題要證明如△ODE≌△BOF,已知四邊形ABCD是平行四邊形,具備了同位角、內錯角相等,又因為OD=OB,可根據AAS能判定△DOE≌△BOF;本題還可證明①△BOM≌△DON;②△ABD≌△CDB;
(2)平行四邊形是中心對稱圖形,這三對全等三角形中的一個都是以其中另一個三角形繞點O旋轉180°后得到或以點O為中心作對稱變換得到.
解答:解:(1)△DOE≌△BOF;
證明:∵四邊形ABCD是平行四邊形,
∴AD∥BC.
∴∠EDO=∠FBO,∠E=∠F.
又∵OD=OB,
∴△DOE≌△BOF(AAS).
①△BOM≌△DON.
證明:∵四邊形ABCD是平行四邊形,
∴AB∥CD.
∴∠MBO=∠NDO,∠BMO=∠DNO.
又∵BO=DO,
∴△BOM≌△DON(AAS).
②△ABD≌△CDB.
證明:∵四邊形ABCD是平行四邊形,
∴AD=CB,AB=CD.
又∵BD=DB,
∴△ABD≌△CDB(SSS).

(2)繞點O旋轉180°后得到或以點O為中心作對稱變換得到.
點評:本題考了全等三角形和平行四邊形的性質和中心對稱圖形,比較容易.(1)可以不限制△ODE≌△BOF,增加題目的“含金量”.
練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

6、如圖,在平行四邊行ABCD中,DE平分∠ADC交BC邊于點E,已知BE=4cm,AB=6cm,則AD的長度是( 。

查看答案和解析>>

科目:初中數學 來源:數學教研室 題型:022

已知如圖所示,在平行四邊ABCD中,對角線相交于點O,已知AB=24cm,BC=18cm,△AOB的周長是54cm那么△AOD的周長是________cm.

查看答案和解析>>

科目:初中數學 來源: 題型:022

已知如圖所示,在平行四邊ABCD中,對角線相交于點O,已知AB=24cm,BC=18cm,△AOB的周長是54cm那么△AOD的周長是________cm.

查看答案和解析>>

科目:初中數學 來源: 題型:

已知:如圖1,矩形ABCD中,AB=6,BC=8,E、F、G、H分別是AB、BCCD、DA四條邊上的點(且不與各邊頂點重合),設m=EF+FG+GH+HE,探索m的取值范圍.

(1)如圖2,當E、F、G、H分別是AB、BC、CD、DA四邊中點時,m________

(2)為了解決這個問題,小貝同學采用軸對稱的方法,如圖3,將整個圖形以CD為對稱軸翻折,接著再連續(xù)翻折兩次,從而找到解決問題的途徑,求得m的取值范圍.

①請在圖1中補全小貝同學翻折后的圖形;

m的取值范圍是____________

【解析】本題主要考查對平行四邊形的性質和判定,全等三角形的性質和判定等知識點的理解和掌握

 

查看答案和解析>>

科目:初中數學 來源:2012屆北京市西城區(qū)九年級一模數學卷(解析版) 題型:解答題

已知:如圖1,矩形ABCD中,AB=6,BC=8,E、FG、H分別是AB、BC、CD、DA四條邊上的點(且不與各邊頂點重合),設m=EF+FG+GH+HE,探索m的取值范圍.

(1)如圖2,當E、FG、H分別是ABBC、CD、DA四邊中點時,m________

(2)為了解決這個問題,小貝同學采用軸對稱的方法,如圖3,將整個圖形以CD為對稱軸翻折,接著再連續(xù)翻折兩次,從而找到解決問題的途徑,求得m的取值范圍.

①請在圖1中補全小貝同學翻折后的圖形;

m的取值范圍是____________

【解析】本題主要考查對平行四邊形的性質和判定,全等三角形的性質和判定等知識點的理解和掌握

 

查看答案和解析>>

同步練習冊答案