【題目】如圖,在ABC中,ABAC,AD是邊BC上的中線,BEAC于點(diǎn)E,交AD于點(diǎn)H過點(diǎn)CCFABBE的延長線于點(diǎn)F

1)求證:ABH∽△BFC;

2)求證:BH2HEHF

3)若AB2,∠BAC45°,求BH的長.

【答案】1)見解析;(2)見解析;(3

【解析】

1)根據(jù)兩角對(duì)應(yīng)相等兩三角形相似證明即可;

2)連接CH,首先證明BHHC,再證明CHE∽△FHC可得結(jié)論;

3)延長CHABM,由題意CMAB.利用全等三角形的性質(zhì)證明AMAE2,求出BM即可解決問題.

1)證明:∵ABACAD是邊BC上的中線,

∴∠BAD=∠CAD,ADBC,

BEAC,

∴∠BDH=∠AEH90°,

∵∠AHE=∠BHD,

∴∠DBH=∠DAC=∠BAD,

CFAB

∴∠ABH=∠F,

∴△ABH∽△BFC

2)連接CH.∵ADBC,BDDC,

BHHC,

∴∠HBC=∠HCB,

ABAC

∴∠ABC=∠ACB,

∴∠ABH=∠ACH

CFAB,

∴∠ABH=∠F

∴∠HCE=∠F,

∵∠CHE=∠CHF

∴△CHE∽△FHC,

,

HC2HEHF

BHHC,

BH2HEHF;

3)延長CHABM,由題意CMAB,

BEAC,∠BAC45°,

∴∠ABE45°,

AEABcos45°,

∵∠HAM=∠HAE,∠HMA=∠HEA,∠AMH=∠AEH90°

∴△AHM≌△AHEAAS),

AMAE,

BMABAM2,

RtBHM中,BH22

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在正方形ABCD中,以BC為直徑作半圓O,以點(diǎn)D為圓心、DA為半徑做圓弧交半圓O于點(diǎn)P.連結(jié)DP并延長交AB于點(diǎn)E

1)求證:DE為半圓O的切線;

2)求的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】2020年新型冠狀病毒肆虐全球,某地區(qū)有一外來無癥狀感染者,沒有有效隔離,經(jīng)過兩輪傳染后共有121人患了流感.

1)每輪傳染中平均一個(gè)人傳染了多少個(gè)人?

2)如果不及時(shí)控制,第三輪將又有多少人被傳染?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某市政府為了扶貧,鼓勵(lì)當(dāng)?shù)剞r(nóng)民養(yǎng)殖小龍蝦,如圖:張叔叔順著圩梗AN、AMAN3m,AM10m,∠MAN45°),用8m長的漁網(wǎng)搭建了一個(gè)養(yǎng)殖水域(即四邊形ABCD),圩梗邊不需要漁網(wǎng),ABCD,∠C90°.設(shè)BCxm,四邊形ABCD面積為Sm2).

1)求出S關(guān)于x的函數(shù)表達(dá)式及x的取值范圍;

2x為何值時(shí),圍成的養(yǎng)殖水域面積最大?最大面積是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】矩形中,(其中

1)點(diǎn),分別在邊,上,;

①如圖,若,且點(diǎn)中點(diǎn),求證;

②如圖,若,且,求證:;

2)如圖,當(dāng)時(shí),點(diǎn)的速度從,點(diǎn)的速度從,當(dāng)點(diǎn)時(shí)兩點(diǎn)都停止運(yùn)動(dòng),則點(diǎn)的運(yùn)動(dòng)時(shí)間為多少時(shí),的面積最小,最小面積為多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】新冠肺炎疫情爆發(fā)以來,口罩成為需求最為迫切的防護(hù)物資.在這個(gè)關(guān)鍵時(shí)刻,我國某企業(yè)利用自身優(yōu)勢(shì)轉(zhuǎn)產(chǎn)口罩,這背后不僅體現(xiàn)出企業(yè)強(qiáng)烈的社會(huì)責(zé)任感,更是我國人民團(tuán)結(jié)一心抗擊疫情的決心.據(jù)悉該企業(yè)3月份的口罩日產(chǎn)能已達(dá)到500萬只,預(yù)計(jì)今后數(shù)月內(nèi)都將保持同樣的產(chǎn)能,則3月份(按31天計(jì)算)該企業(yè)生產(chǎn)的口罩總數(shù)量用科學(xué)記數(shù)法表示為(

A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】閱讀下列材料,并完成相應(yīng)任務(wù):

黃金分割

天文學(xué)家開普勒把黃金分割稱為神圣分割,并指出畢達(dá)哥拉斯定理(勾股定理)和黃金分割是幾何中的雙寶,前者好比黃金,后者堪稱珠寶,歷史上最早正式在書中使用“黃金分割”這個(gè)名稱的是歐姆,19世紀(jì)以后“黃金分割”的說法逐漸流行起來,黃金分割被廣泛應(yīng)用于建筑等領(lǐng)域.黃金分割指把一條線段分為兩部分,使其中較長部分與線段總長之比等于較短部分與較長部分之比,該比值為.用下面的方法(如圖①)就可以作出已知線段的黃金分割點(diǎn)

①以線段為邊作正方形

②取的中點(diǎn),連接,

③延長,使

④以線段為邊作正方形,點(diǎn)就是線段的黃金分割點(diǎn).

以下是證明點(diǎn)就是線段的黃金分割點(diǎn)的部分過程:

證明:設(shè)正方形的邊長為1,則,

中點(diǎn),

,

中,

,

,

任務(wù):

1)補(bǔ)全題中的證明過程;

2)如圖②,點(diǎn)為線段的黃金分割點(diǎn),分別以為邊在線段同側(cè)作正方形和矩形,連接.求證:

3)如圖③,在正五邊形中,對(duì)角線分別交于點(diǎn)求證:點(diǎn)的黃金分割點(diǎn).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】成都市為了扎實(shí)推進(jìn)精準(zhǔn)扶貧工作,出臺(tái)了民生兜底、醫(yī)保脫貧、教育救助、產(chǎn)業(yè)扶持、養(yǎng)老托管和易地搬遷這六種幫扶措施,每戶貧困戶都享受了25種幫扶措施,現(xiàn)把享受了2種、3種、4種和5種幫扶措施的貧困戶分別稱為A,B,C,D類貧困戶,為檢查幫扶措施是否落實(shí),隨機(jī)抽取了若干貧困戶進(jìn)行調(diào)查,現(xiàn)將收集的數(shù)據(jù)繪制成如圖兩幅不完整的統(tǒng)計(jì)圖.請(qǐng)根據(jù)圖中信息,回答下列問題:

1)本次抽樣調(diào)查了多少戶貧困戶?

2)成都市共有9100戶貧困戶,請(qǐng)估計(jì)至少得到4種幫扶措施的大約有多少戶?

32020年是精準(zhǔn)扶貧攻關(guān)年,為更好地做好工作,現(xiàn)準(zhǔn)備從D類貧困戶中的甲、乙、丙、丁四戶中隨機(jī)選取兩戶進(jìn)行試點(diǎn)幫扶,請(qǐng)用樹狀圖或列表法求出恰好選中乙和丙的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,DABCBC邊上一點(diǎn),連接AD,作ABD的外接圓,將ADC沿直線AD折疊,點(diǎn)C的對(duì)應(yīng)點(diǎn)E落在⊙O上.

1)求證:AEAB

2)填空:

①當(dāng)∠CAB90°,cosADB,BE2時(shí),邊BC的長為   

②當(dāng)∠BAE   時(shí),四邊形AOED是菱形.

查看答案和解析>>

同步練習(xí)冊(cè)答案