【題目】一個(gè)袋中裝有除顏色外都相同的紅球和黃球共10個(gè),其中紅球6個(gè).從袋中任意摸出1球.

1摸出的球是白球是什么事件?它的概率是多少?

2摸出的球是黃球是什么事件?它的概率是多少?

【答案】1)不可能事件,0;(2)隨機(jī)事件,

【解析】

1)袋中沒有白球,不可能摸出白球,故摸出的球是白球是不可能事件,概率為0;

2)可能摸出黃球,所以是隨機(jī)事件,黃球的個(gè)數(shù)為10-6=4,總共10個(gè)球,兩者之比即為概率.

解:(1)∵一個(gè)袋中裝有除顏色外都相同的紅球和黃球共10個(gè),其中紅球6個(gè),

摸出的球是白球是不可能事件,摸出的球是白球的概率是:0;

2))摸出的球是黃球是隨機(jī)事件,摸出的球是黃球的概率是:

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,等腰梯形ABCD中,ADBC,AD=3BC=7,∠B=60°,P為下底BC上一點(diǎn)(不與B、C重合),連結(jié)AP,過(guò)點(diǎn)PPECDE,使得∠APE=B

1)求證:△ABP∽△PCE

2)在底邊BC上是否存在一點(diǎn)P,使DEEC=53?如果存在,求BP的長(zhǎng);如果不存在,請(qǐng)說(shuō)明理由

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,山上有一座高塔,山腳下有一圓柱形建筑物平臺(tái),高塔及山的剖面與圓柱形建筑物平臺(tái)的剖面ABCD在同一平面上,在點(diǎn)A處測(cè)得塔頂H的仰角為35°,在點(diǎn)D處測(cè)得塔頂H的仰角為45°,又測(cè)得圓柱形建筑物的上底面直徑AD6m,高CD2.8m,則塔頂端H到地面的高度HG為(

(參考數(shù)據(jù):,,

A.10.8mB.14mC.16.8mD.29.8m

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某人定制了一批地磚,每塊地磚(如圖(1)所示)是邊長(zhǎng)為0.5米的正方形.點(diǎn)E、F分別在邊上,、和四邊形均由單一材料制成,制成和四邊形的三種材料的價(jià)格依次為每平方米30元、20元、10元.若將此種地磚按圖(2)所示的形式鋪設(shè),且中間的陰影部分組成正方形.設(shè)

1________,_________.(用含有x的代數(shù)式表示).

2)已知燒制該種地磚平均每塊需加工費(fèi)0.35元,若要長(zhǎng)大于0.1米,且每塊地磚的成本價(jià)為4元(成本價(jià)=材料費(fèi)用+加工費(fèi)用),則長(zhǎng)應(yīng)為多少米?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】問(wèn)題:(1)如圖①,在RtABC中,ABACDBC邊上一點(diǎn)(不與點(diǎn)B,C重合),將線段AD繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)90°得到AE,連接EC,則線段BC,DC,EC之間滿足的等量關(guān)系式為   ;

探索:(2)如圖②,在RtABCRtADE中,ABAC,ADAE,將△ADE繞點(diǎn)A旋轉(zhuǎn),使點(diǎn)D落在BC邊上,試探索線段ADBD,CD之間滿足的等量關(guān)系,并證明你的結(jié)論;

應(yīng)用:(3)如圖③,在四邊形ABCD中,∠ABC=∠ACB=∠ADC45°.若BD9,CD3,求AD的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】拋物線yx2+bx+3的對(duì)稱軸為直線x1.若關(guān)于x的一元二次方程x2+bx+3t0t為實(shí)數(shù))在﹣2x3的范圍內(nèi)有實(shí)數(shù)根,則t的取值范圍是(  )

A.12<t3B.12<t4C.12<t4D.12<t3

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,正方形ABCD的邊長(zhǎng)為4,點(diǎn)ECD的中點(diǎn),AF平分∠BAEBC于點(diǎn)F,將△ADE繞點(diǎn)A順時(shí)針旋轉(zhuǎn)90°△ABG,則CF的長(zhǎng)為____.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在△ABC中,∠C=ABC,BEAC,垂足為點(diǎn)E,BDE是等邊三角形,若AD=4,則線段BE的長(zhǎng)為______

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】(9)已知:ABCD的兩邊ABAD的長(zhǎng)是關(guān)于x的方程的兩個(gè)實(shí)數(shù)根.

1)當(dāng)m為何值時(shí),四邊形ABCD是菱形?求出這時(shí)菱形的邊長(zhǎng);

2)若AB的長(zhǎng)為2,那么ABCD的周長(zhǎng)是多少?

查看答案和解析>>

同步練習(xí)冊(cè)答案