【題目】在一個(gè)不透明的口袋里裝有只有顏色不同的黑、白兩種顏色的球20個(gè),某學(xué)習(xí)小組做摸球?qū)嶒?yàn),將球攪勻后從中隨機(jī)摸出一個(gè)記下顏色,再把它放回口袋中,不斷重復(fù),如表是活動(dòng)進(jìn)行中的一組數(shù)據(jù)統(tǒng)計(jì):
摸球的次數(shù)m | 100 | 150 | 200 | 500 | 800 | 1000 |
摸到白球的次數(shù)n | 58 | 96 | 116 | 295 | 484 | 601 |
摸到白球的頻率 | 0.58 | 0.64 | 0.58 | 0.59 | 0.605 | 0.601 |
(1)請估計(jì):當(dāng)n很大時(shí),摸到白球的頻率將會(huì)接近________ ;
(2)假如你去摸一次,你摸到白球的概率是________,摸到黑球的概率是________;
(3)試估算口袋中黑球有________個(gè),白球有________個(gè).
【答案】 0.60 0.60 0.40 8 12
【解析】試題分析:(1)當(dāng)n很大時(shí),摸到白球的頻率將會(huì)接近表格中頻率的平均數(shù),求出平均數(shù)即可;
(2)根據(jù)(1)中求得的摸到白球的頻率即可得;
(3)用球的總個(gè)數(shù)乘以各自的頻率即可求得球的個(gè)數(shù).
試題解析:(1)當(dāng)n很大時(shí),摸到白球的頻率將會(huì)接近(0.58+0.64+0.58+0.59+0.605+0.601)÷6≈0.60,
故答案為:0.60;
(2)摸到白球的概率是0.60,摸到黑球的概率是1-0.60=0.40,
故答案為:0.60,0.40;
(3)白球有20×0.60=12(只),黑球有20-12=8(只),
故答案為:8,12.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:在四邊形ABCD中,根據(jù)下列不同條件求BD長.
(1)如圖1,當(dāng)∠ABC=∠ADC=30°,AD=DC,AB=9,BC=12時(shí),求BD的長.
(2)如圖2,當(dāng)∠ABC=∠ADC=45°,AD⊥AC,AB=6,BC=5時(shí),求BD的長.
(3)如圖3,當(dāng)∠ABC=2∠ADC=120°,AD=DC,四邊形ABCD的面積為4時(shí),請直接寫出BD的長是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】【閱讀理解】
若, , 為數(shù)軸上三點(diǎn),若點(diǎn)到的距離是點(diǎn)到的距離的倍,我們就稱點(diǎn)是的優(yōu)點(diǎn).例如,如圖①,點(diǎn)表示的數(shù)為,點(diǎn)表示的數(shù)為.表示數(shù)的點(diǎn)到點(diǎn)的距離是,到點(diǎn)的距離是,那么點(diǎn)是的優(yōu)點(diǎn);又如,表示的點(diǎn)到點(diǎn)的距離是,到點(diǎn)的距離是,那么但點(diǎn)是的好點(diǎn).
【知識運(yùn)用】
如圖②,、為數(shù)軸上兩點(diǎn),點(diǎn)所表示的數(shù)為,點(diǎn)所表示的數(shù)為.
()數(shù)__________所表示的點(diǎn)是的優(yōu)點(diǎn).
()如圖③,, 為數(shù)軸上兩點(diǎn),點(diǎn)所表示的數(shù)為,點(diǎn)所表示的數(shù)為.現(xiàn)有一只電子螞蟻從點(diǎn)出發(fā),以個(gè)單位每秒的速度向左運(yùn)動(dòng),到達(dá)點(diǎn)停止.當(dāng)為何值時(shí), 、和中恰有一個(gè)點(diǎn)為其余兩點(diǎn)的好點(diǎn)?(請直接寫出答案)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,四邊形ABCD中,對角線AC、BD相交于點(diǎn)O,,,且∠ABC=900.
(1)求證:四邊形ABCD是矩形.
(2)若∠ACB=300,AB=1,求①∠AOB的度數(shù);②四邊形ABCD的面積。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線y=﹣x+與x軸、y軸分別交于點(diǎn)A、B,在坐標(biāo)軸上找點(diǎn)P,使△ABP為等腰三角形,則點(diǎn)P的個(gè)數(shù)為( )
A. 2B. 4C. 6D. 8
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線的解析表達(dá)式為,且與軸交于點(diǎn)D,直線經(jīng)過點(diǎn)A,B,直線,交于點(diǎn)C.
(1)求直線的解析式;
(2)求△ADC的面積;
(3)在直線上存在異于點(diǎn)C的另一點(diǎn)P,使得△ADP與△ADC的面積相等,請直接寫出點(diǎn)P的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在直角中,,,AD,CE分別是和的平分線,AD,CE相交于點(diǎn)F.
求的度數(shù);
判斷FE與FD之間的數(shù)量關(guān)系,并證明你的結(jié)論.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知直線y=x與反比例函數(shù)y=(x>0)的圖象交于點(diǎn)A(2,m);將直線y=x向下平移后與反比例函數(shù)y=(x>0)的圖象交于點(diǎn)B,且△AOB的面積為3.
(1)求k的值;
(2)求平移后所得直線的函數(shù)表達(dá)式.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com