精英家教網 > 初中數學 > 題目詳情

【題目】如圖,在平面直角坐標系中,一次函數y=kx+b(k0)的圖象與反比例函雙y=(m0)的陽象交于點c(n,3),與x軸、y軸分別交于點A、B,過點CCMx軸,垂足為M,若tanCAM=,OA=2.

(1)求反比例函數和一次函數的解析式;

(2)點D是反比例函數圖象在第三象限部分上的一點,且到x軸的距離是3,連接AD、BD,求△ABD的面積.

【答案】(1)y=,y=x+;(2)3.

【解析】

(1)利用三角函數求得AM的長,C的坐標即可求得,利用待定系數法求得反比例函數解析式,然后利用待定系數法求得一次函數的解析式;

(2)首先求得D的坐標,然后利用三角形的面積公式求解.

(1)∵在直角△ACM中,tanCAM==,CM=3,

AM=4,

OM=AM﹣OA=4﹣2=2.

n=2,

C的坐標是(2,3).

把(2,3)代入y=m=6.

則反比例函數的解析式是y=;

根據題意得,

解得

則一次函數的解析式是y=x+;

(2)在y=中令y=﹣3,則x=﹣2.

D的坐標是(﹣2,﹣3).

AD=3,

SABD=×3×2=3.

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

【題目】為了提高產品的附加值,某公司計劃將研發(fā)生產的1200件新產品進行精加工后再投放市場.現有甲、乙兩個工廠都具備加工能力,公司派出相關人員分別到這兩個工廠了解情況,獲得如下信息:

信息一:甲工廠單獨加工完成這批產品比乙工廠單獨加工完成這批產品多用10天;

信息二:乙工廠每天加工的數量是甲工廠每天加工數量的1.5倍.

根據以上信息,求甲、乙兩個工廠每天分別能加工多少件新產品.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】已知⊙O的直徑AB=2,弦AC與弦BD交于點E.且ODAC,垂足為點F.

(1)如圖1,如果AC=BD,求弦AC的長;

(2)如圖2,如果E為弦BD的中點,求∠ABD的余切值;

(3)聯結BC、CD、DA,如果BC是⊙O的內接正n邊形的一邊,CD是⊙O的內接正(n+4)邊形的一邊,求ACD的面積.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,一枚棋子放在七角棋盤的第0號角,現依逆時針方向移動這枚棋子,其各步依次移動1,2,3,…,n個角,如第一步從0號角移動到第1號角,第二步從第1號角移動到第3號角,第三步從第3號角移動到第6號角,….若這枚棋子不停地移動下去,則這枚棋子永遠不能到達的角的個數是( )

A.0 B.1 C.2 D.3

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,正方形ABCD的邊長是2,點ECD邊的中點,點F是邊BC上不與點B,C重合的一個動點,把∠C沿直線EF折疊,使點C落在點C′處.當△ADC′為等腰三角形時,FC的長為_____

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】學農期間我們完成了每日一題,進一步研究了角的平分線. 工人師傅常用角尺平分一個任意角. 作法如下:

如圖,∠AOB 是一個任意角,在邊 OA、OB 上分別取 OM=ON 移動角尺,使角尺兩邊相同的刻度分別與 M、N 重合. 過角尺頂點 C 的射線 OC 便是∠AOB 的平分線. 我們發(fā)現利用 SSS 證明兩個三角形全等,從而證明∠AOC=BOC.

學習了軸對稱的知識后,我們知道角是軸對稱圖形,角平分線 所在直線就是它的對稱軸,愛動腦筋的小慧同學利用軸對稱圖形的性質發(fā)現了一種畫角平分線的方法.

方法如下:如圖 1,將兩個全等的三角形紙片△DEF 和△MNL 的一組對應邊分別與∠AOB 的一邊共線,同時這條邊所對頂點落在∠AOB 的另一條邊上,則△DEF 和△MNL 的另一組對應邊的交點 P 在∠AOB 的平分線上.

1)小慧的做法正確嗎?說明理由:

小旭說:利用軸對稱的性質,我只用刻度尺就可以畫角平分線.(提示:刻度尺可以度量出相等的線段)

2)請你和小旭一樣,只用刻度尺畫出圖 2 中∠QRS 的角平分線.(保留作圖痕跡,不寫作法)

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】在平面直角坐標系中,設點A(0,4)、B(3,8).若點P(x,0),使得∠APB最大,則x=( 。

A. 3 B. 0 C. 4 D.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,在平面直角坐標系中,一次函數y=kx+b(k0)的圖象與反比例函雙y=(m0)的陽象交于點c(n,3),與x軸、y軸分別交于點A、B,過點CCMx軸,垂足為M,若tanCAM=,OA=2.

(1)求反比例函數和一次函數的解析式;

(2)點D是反比例函數圖象在第三象限部分上的一點,且到x軸的距離是3,連接AD、BD,求△ABD的面積.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】某鄉(xiāng)鎮(zhèn)要在生活垃圾存放區(qū)建一個老年活動中心,這樣必須把1200立方米的生活垃圾運走:

1)假如每天能運x立方米,所需時間為y天,寫出yx之間的函數表達式;

2)若每輛拖拉機一天能運12立方米,則5輛這樣的拖拉機要用多少天才能運完?

3)在(2)的情況下,運了8天后,剩下的任務要在不超過6天的時間內完成,那么至少需要增加多少輛這樣的拖拉機才能按時完成任務?

查看答案和解析>>

同步練習冊答案