【題目】如圖,△ABC、FGH中,D、E兩點分別在AB、AC上,F點在DE上,G、H兩點在BC上,且DEBC,F(xiàn)GAB,F(xiàn)HAC,若BG:GH:HC=4:6:5,則△ADE與△FGH的面積比為何?( 。

A. 2:1 B. 3:2 C. 5:2 D. 9:4

【答案】D

【解析】

只要證明ADE∽△FGH,可得,由此即可解決問題.

BG:GH:HC=4:6:5,可以假設(shè)BG=4k,GH=6k,HC=5k,

DEBC,F(xiàn)GAB,F(xiàn)HAC,

∴四邊形BGFD是平行四邊形,四邊形EFHC是平行四邊形,

DF=BG=4k,EF=HC=5k,DE=DF+EF=9k,FGH=B=ADE,FHG=C=AED,

∴△ADE∽△FGH,

故選D.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖:∠EAF=15°,AB=BC=CD=DE=EF,則∠DEF等于(

A.60°B.75°C.70°D.90°

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在學校開展的數(shù)學活動課上,小明和小剛制作了一個正三樓錐(質(zhì)量均勻,四個面完全相同),并在各個面上分別標記數(shù)字1,2,3,4,游戲規(guī)則如下每人投擲三棱錐兩次,并記錄底面的數(shù)字,如果兩次所擲數(shù)字的和為單數(shù),那么算小明贏,如果兩歡所擲數(shù)字的和為偶數(shù),那么算小明贏;

(1)請用列表或者面樹狀圍的方法表示上述游戲中的所有可能結(jié)果.

(2)請分別隸出小明和小剛能贏的概率,并判新游戲的公平性.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】(閱讀理解)

課外興趣小組活動時,老師提出了如下問題:

如圖1,△ABC中,若AB8,AC6,求BC邊上的中線AD的取值范圍.小明在組內(nèi)經(jīng)過合作交流,得到了如下的解決方法:延長AD到點E,使DEAD,請根據(jù)小明的方法思考:

(1)由已知和作圖能得到△ADC≌△EDB的理由是_____.

A.SSS B.SAS C.AAS D.HL

(2)求得AD的取值范圍是______.

A.6AD8 B.6≤AD≤8 C.1AD7 D.1≤AD≤7

(感悟)

解題時,條件中若出現(xiàn)中點”“中線字樣,可以考慮延長中線構(gòu)造全等三角形,把分散的已知條件和所求證的結(jié)論集合到同一個三角形中.

(問題解決)

(3)如圖2AD是△ABC的中線,BEACE,交ADF,且AEEF.求證:ACBF.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】甲、乙兩人駕車都從Р地出發(fā),沿一條筆直的公路勻速前往Q地,乙先出發(fā)一段時間后甲再出發(fā),甲、乙兩人到達Q地后均停止,已知PQ兩地相距200 km,設(shè)乙行駛的時間為th),甲、乙兩人之間的距離為ykm),表示yt函數(shù)關(guān)系的部分圖象如圖所示.請解決以下問題:

1)由圖象可知,甲比乙遲出發(fā)________h.圖中線段BC所在直線的函數(shù)解析式為________________;

2)設(shè)甲的速度為,求出的值;

3)根據(jù)題目信息補全函數(shù)圖象(不需要寫出分析過程,但必須標明關(guān)鍵點的坐標);并直接寫出當甲、乙兩人相距32 kmt的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在長度為1個單位長度的小正方形組成的正方形網(wǎng)格中,點A、B、C在小正方形的頂點上.

1)在圖中畫出與△ABC關(guān)于直線l成軸對稱的△ABC′;

2)在直線l上找一點P,使PB′+PC的長最短;

3)若△ACM是以AC為腰的等腰三角形,點M在小正方形的頂點上.這樣的點M共有   個.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】生活中處處有數(shù)學.

1)如圖(1)所示,一扇窗戶打開后,用窗鉤將其固定,這里所運用的數(shù)學原理是   

2)如圖(2)所示,在新修的小區(qū)中,有一條字形綠色長廊,其中,在,三段綠色長廊上各修一小涼亭,,且,點的中點,在涼亭之間有一池塘,不能直接到達,要想知道之間的距離,只需要測出線段的長度,這樣做合適嗎?請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖已知點A(1,a是反比例函數(shù)的圖象上一點直線與反比例函數(shù)的圖象的交點為點B、D,B(3,﹣1),

(1)求反比例函數(shù)的解析式

(2)求點D坐標,并直接寫出y1y2x的取值范圍

(3)動點Px,0)x軸的正半軸上運動,當線段PA與線段PB之差達到最大時,求點P的坐標

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖所示,在某海域,一般指揮船在C處收到漁船在B處發(fā)出的求救信號,經(jīng)確定,遇險拋錨的漁船所在的B處位于C處的南偏西45°方向上,且BC=60海里;指揮船搜索發(fā)現(xiàn),在C處的南偏西60°方向上有一艘海監(jiān)船A,恰好位于B處的正西方向.于是命令海監(jiān)船A前往搜救,已知海監(jiān)船A的航行速度為30海里/小時,問漁船在B處需要等待多長時間才能得到海監(jiān)船A的救援?(參考數(shù)據(jù):,結(jié)果精確到0.1小時)

查看答案和解析>>

同步練習冊答案