如圖,二次函數(shù)y=ax2+bx+c的圖象的頂點C的坐標為(0,-2),交x軸于A、B兩點,其中A(-1,0),直線l:x=m(m>1)與x軸交于D.
(1)求二次函數(shù)的解析式和B的坐標;
(2)在直線l上找點P(P在第一象限),使得以P、D、B為頂點的三角形與以B、C、O為頂點的三角形相似,求點P的坐標(用含m的代數(shù)式表示);
(3)在(2)成立的條件下,在拋物線上是否存在第一象限內的點Q,使△BPQ是以P為直角頂點的等腰直角三角形?如果存在,請求出點Q的坐標;如果不存在,請說明理由.

解:(1)∵拋物線y=ax2+bx+c的頂點坐標為C(0,-2),
∴b=0,c=-2;
∵y=ax2+bx+c過點A(-1,0),
∴0=a+0-2,a=2,
∴拋物線的解析式為y=2x2-2.
當y=0時,2x2-2=0,
解得x=±1,
∴點B的坐標為(1,0);

(2)設P(m,n).
∵∠PDB=∠BOC=90°,
∴當以P、D、B為頂點的三角形與以B、C、O為頂點的三角形相似時,分兩種情況:
①若△OCB∽△DBP,則=
=,
解得n=
由對稱性可知,在x軸上方和下方均有一點滿足條件,
∴此時點P坐標為(m,)或(m,);
②若△OCB∽△DPB,則=,
=
解得n=2m-2.
由對稱性可知,在x軸上方和下方均有一點滿足條件,
∴此時點P坐標為(m,2m-2)或(m,2-2m),
∵P在第一象限,m>1,
∴(m,2m-2)或(m,2-2m)舍
綜上所述,滿足條件的點P的坐標為:(m,),(m,),(m,2m-2)或(m,2-2m).

(3)假設在拋物線上存在第一象限內的點Q(x,2x2-2),使△BPQ是以P為直角頂點的等腰直角三角形.
如圖,過點Q作QE⊥l于點E.
∵∠DBP+∠BPD=90°,∠QPE+∠BPD=90°,
∴∠DBP=∠QPE.
在△DBP與△EPQ中,
,
∴△DBP≌△EPQ,
∴BD=PE,DP=EQ.
分兩種情況:
①當P(m,)時,
∵B(1,0),D(m,0),E(m,2x2-2),

解得,(均不合題意舍去);
②當P(m,2(m-1))時,
∵B(1,0),D(m,0),E(m,2x2-2),
,
解得(均不合題意舍去);
綜上所述,不存在滿足條件的點Q.
分析:(1)由于拋物線的頂點C的坐標為(0,-2),所以拋物線的對稱軸為y軸,且與y軸交點的縱坐標為-2,即b=0,c=-2,再將A(-1,0)代入y=ax2+bx+c,求出a的值,由此確定該拋物線的解析式,然后令y=0,解一元二次方程求出x的值即可得到點B的坐標;
(2)設P點坐標為(m,n).由于∠PDB=∠BOC=90°,則D與O對應,所以當以P、D、B為頂點的三角形與以B、C、O為頂點的三角形相似時,分兩種情況討論:①△OCB∽△DBP;②△OCB∽△DPB.根據相似三角形對應邊成比例,得出n與m的關系式,進而可得到點P的坐標;
(3)假設在拋物線上存在第一象限內的點Q(x,2x2-2),使△BPQ是以P為直角頂點的等腰直角三角形.過點Q作QE⊥l于點E.利用AAS易證△DBP≌△EPQ,得出BD=PE,DP=EQ.再分兩種情況討論:①P(m,);②P(m,2(m-1)).都根據BD=PE,DP=EQ列出方程組,求出x與m的值,再結合條件x>0且m>1即可判斷不存在第一象限內的點Q,使△BPQ是以P為直角頂點的等腰直角三角形.
點評:此題是二次函數(shù)的綜合題,其中涉及到二次函數(shù)解析式的確定,相似三角形、全等三角形的判定和性質,等腰直角三角形的性質等知識;在相似三角形的對應角和對應邊不確定的情況下,一定要注意分類討論,以免漏解.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

精英家教網如圖,二次函數(shù)的圖象經過點D(0,
7
9
3
),且頂點C的橫坐標為4,該圖象在x軸上截得的線段AB的長為6.
(1)求二次函數(shù)的解析式;
(2)在該拋物線的對稱軸上找一點P,使PA+PD最小,求出點P的坐標;
(3)在拋物線上是否存在點Q,使△QAB與△ABC相似?如果存在,求出點Q的坐標;如果不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,二次函數(shù)圖象的頂點為坐標原點O,且經過點A(3,3),一次函數(shù)的圖象經過點A和點B(6,0).
(1)求二次函數(shù)與一次函數(shù)的解析式;
(2)如果一次函數(shù)圖象與y相交于點C,點D在線段AC上,與y軸平行的直線DE與二次函數(shù)圖象相交于點E,∠CDO=∠OED,求點D的坐標.
精英家教網

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網如圖,二次函數(shù)y=ax2+bx+c的圖象與x軸交于B、C兩點,與y軸交于點A(0,-3),∠ABC=45°,∠ACB=60°,求這個二次函數(shù)解析式.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

某公司推出了一種高效環(huán)保型洗滌用品,年初上市后,公司經歷了從虧損到盈利的過程,如圖的二次函數(shù)圖象(部分)刻畫了該公司年初以來累積利潤s(萬元)與時間t(月)之間的關系(即前t個月的利潤總和s與t之間的關系).根據圖象提供的信息,解答下列問題:
(1)求累積利潤s(萬元)與時間t(月)之間的函數(shù)關系式;
(2)求截止到幾月末公司累積利潤可達30萬元;
(3)從第幾個月起公司開始盈利?該月公司所獲利潤是多少萬元?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,二次函數(shù)y=ax2+bx+c的圖象與x軸相交于兩個點,根據圖象回答:(1)b
0(填“>”、“<”、“=”);
(2)當x滿足
x<-4或x>2
x<-4或x>2
時,ax2+bx+c>0;
(3)當x滿足
x<-1
x<-1
時,ax2+bx+c的值隨x增大而減。

查看答案和解析>>

同步練習冊答案