【題目】如圖,一次函數(shù)y=-x+(k+13)和反比例函數(shù)的圖象相交于點A與點B.過A點作AC⊥x軸于點C,SAOC=6.

(1)求反比例函數(shù)和一次函數(shù)的解析式;

(2)求點A與點B的坐標(biāo);

(3)求AOB的面積.

【答案】(1),y=-x+1(2)A-3,4),B4,-3)(3

【解析】試題分析: 設(shè)點坐標(biāo)為, 點在反比例函數(shù)圖象上,代入反比例函數(shù),根據(jù)求出的值,即可求得反比例函數(shù)和一次函數(shù)的解析式.

聯(lián)立方程,即可求得交點坐標(biāo).

過點軸于點 根據(jù),求得即可.

試題解析:

1)設(shè)點坐標(biāo)為,

點在反比例函數(shù)圖象上,∴,

.

∴反比例函數(shù)的解析式為,一次函數(shù)解析式為

2)由(1)可得,解得, .

3)過點軸于點

設(shè)直線軸交于點為

.

AOB的面積為.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,港口B位于港口A的南偏東方向,燈塔C恰好在AB的中點處,一艘海輪位于港口A的正南方向,港口B的正西方向的D處,它沿正北方向航行km,到達(dá)E處,測得燈塔C在北偏東方向上這時,E處距離港口A有多遠(yuǎn)?(參考數(shù)據(jù):

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在菱形ABCD中,AB=BD,點E、F分別在BC、CD上,且BE=CF,連接BF、DE交于點M,延長ED到H使DH=BM,連接AM,AH,則以下四個結(jié)論:

①△BDF≌△DCE;②∠BMD=120°;③△AMH是等邊三角形;④S四邊形ABCD= AM2

其中正確結(jié)論的個數(shù)是( )

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】ABC中,∠BAC=90°,AB=AC,點D為直線BC上一動點(點D不與B,C重合),以AD為邊在AD右側(cè)作正方形ADEF,連接CF

1)觀察猜想

如圖1,當(dāng)點D在線段BC上時,

BCCF的位置關(guān)系為   ;

BC,CD,CF之間的數(shù)量關(guān)系為   .(直接寫出結(jié)論)

2)數(shù)學(xué)思考

如圖2,當(dāng)點D在線段CB的延長線上時,結(jié)論①,②是否仍然成立?若成立,請給予證明;若不成立,請你寫出正確結(jié)論再給予證明.

3)拓展延伸

如圖3,當(dāng)點D在線段BC的延長線上時,延長BACF于點G連接GE.若已知AB=, CD=BC,則GE的長為 .(請直接寫出結(jié)果)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,平行四邊形中,,,∠,點的中點,點的邊上,若為等腰三角形,則的長為__________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知正方形,為邊上一點不與、重合),過,且,連接

1)如圖1,求的度數(shù);

2)如圖2,連接,求證:;

3)如圖2,當(dāng),,則   (直接寫出結(jié)果)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知反比例函數(shù)(k為常數(shù),k≠0)的圖象經(jīng)過點A(2,3).

(1)求這個函數(shù)的解析式;

(2)判斷點B(-1,6),C(3,2)是否在這個函數(shù)的圖象上,并說明理由;

(3)當(dāng)-3<x<-1時,求y的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某校八年級有800名學(xué)生,在一次跳繩模擬測試中,從中隨機抽取部分學(xué)生,根據(jù)其測試成績制作了下面兩個統(tǒng)計圖,請根據(jù)相關(guān)信息,解答下列問題:

1)本次抽取到的學(xué)生人數(shù)為______,扇形統(tǒng)計圖中的值為______

2)本次調(diào)查獲取的樣本數(shù)據(jù)的眾數(shù)是_____(分),中位數(shù)是_____(分).

3)根據(jù)樣本數(shù)據(jù),估計我校八年級模擬體測中得12分的學(xué)生約有多少人?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,這是人民公園的景區(qū)示意圖.以中心廣場為原點,分別以正東、正北 方向為 x 軸、y 軸正方向建立平面直角坐標(biāo)系,規(guī)定一個單位長度代表 100m 長.已知 各建筑物都在坐標(biāo)平面網(wǎng)格的格點上,且東門的坐標(biāo)為(400,0)

(1)請寫出圖中下列地點的坐標(biāo):

牡丹園 ; 游樂園 ;

(2)連接音樂臺、湖心亭和望春亭這三個 地點,畫出所得的三角形.然后將所 得三角形向下平移 200m,畫出平移后的圖形;

(3)問題(2)中湖心亭平移后的對應(yīng)點的坐標(biāo)為

查看答案和解析>>

同步練習(xí)冊答案