如圖,AB是⊙O的直徑,AC是弦.
(1)請(qǐng)你按下面步驟畫圖;
第一步,過點(diǎn)A作∠BAC的角平分線,交⊙O于點(diǎn)D;
第二步,過點(diǎn)D作AC的垂線,交AC的延長(zhǎng)線點(diǎn)E.
第三步,連接BD.
(2)求證:AD2=AE•AB;
(3)連接EO,交AD于點(diǎn)F,若5AC=3AB,求的值.
(1)如圖;
(2)先根據(jù)圓周角定理可得∠ADB=90°,再結(jié)合DE⊥AC,AD平分∠CAB,即可證得Rt△ADE∽R(shí)t△ABD,根據(jù)相似三角形的性質(zhì)即可得到結(jié)論;(3)
解析試題分析:(1)根據(jù)角平分線與垂線的畫法即可作出圖形;
(2)先根據(jù)圓周角定理可得∠ADB=90°,再結(jié)合DE⊥AC,AD平分∠CAB,即可證得Rt△ADE∽R(shí)t△ABD,根據(jù)相似三角形的性質(zhì)即可得到結(jié)論;
(3)連OD、BC,它們交于點(diǎn)G,由5AC=3AB,可設(shè)AC=3x,AB=5x,根據(jù)圓周角定理可得∠ACB=90°,由∠CAD=∠DAB,可的弧DC=弧DB,即可得到OD∥AE,OG=AC=,從而證得四邊形ECGD為矩形,可的CE=DG=OD-OG=x-x =x,則AE=AC+CE=3x+x=4x,根據(jù)AE∥OD,可得△AEF∽△DOF,根據(jù)相似三角形的性質(zhì)即可求得結(jié)果.
(1)如圖;
(2)∵AB是⊙O的直徑,
∴∠ADB=90°,
而DE⊥AC,
∴∠AED=90°,
∵AD平分∠CAB,
∴∠CAD=∠DAB,
∴Rt△ADE∽R(shí)t△ABD,
∴AD:AB=AE:AD,
∴AD2=AE•AB;
(3)連OD、BC,它們交于點(diǎn)G,如圖,
∵5AC=3AB,即AC:AB=3:5,
∴不妨設(shè)AC=3x,AB=5x,
∵AB是⊙O的直徑,
∴∠ACB=90°,
又∵∠CAD=∠DAB,
∴弧DC=弧DB,
∴OD垂直平分BC,
∴OD∥AE,OG=AC=,
∴四邊形ECGD為矩形,
∴CE=DG=OD-OG=x-x =x,
∴AE=AC+CE=3x+x=4x,
∵AE∥OD,
∴△AEF∽△DOF,
∴AE:OD=EF:OF,
∴EF:OF=4x:x=8:5,
∴.
考點(diǎn):基本作圖,圓周角定理,矩形的性質(zhì),相似三角形的判定和性質(zhì)
點(diǎn)評(píng):解答本題的關(guān)鍵是熟練掌握直徑所對(duì)的圓周角是直角;相似三角形的對(duì)應(yīng)邊成比例,注意對(duì)應(yīng)字母在對(duì)應(yīng)位置上.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來源:初中數(shù)學(xué)解題思路與方法 題型:047
已知如圖,AB是半圓直經(jīng),△ACD內(nèi)接于半⊙O,CE⊥AB于E,延長(zhǎng)AD交EC的延長(zhǎng)線于F,求證:AC·CD=AD·FC.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:單選題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com