【題目】如圖,在△ABC中,∠BAC=50°,∠B=60°,AE⊥BC于點E,CD平分∠ACB且分別與AB、AE交于點D、F,求∠AFC的度數(shù).

【答案】解:∵AE⊥BC,∴∠AEB=90°. ∵∠B=60°,
∴∠BAE=90°﹣60°=30°.
∴∠CAE=50°﹣30°=20°
∵∠BAC+∠B+∠ACB=180°,
∴∠ACB=180°﹣∠BAC﹣∠B=70°.
又∵CD平分∠ACB,
∴∠ACD= ∠ACB=35°.
∴∠AFC=180°﹣35°﹣20°=125°.
【解析】先根據(jù)垂直的定義求∠BAE的度數(shù),再結合圖形根據(jù)角的和差求出∠CAE的度數(shù),利用三角形的內(nèi)角和求∠ACB,因CD平分∠ACB,所以可得∠ACD,最后利用△AFC的內(nèi)角和為180°,求得∠AFC的度數(shù).

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,點O在邊長為8的正方形ABCD的AD邊上運動(4<C)A<8),以O為圓心,OA長為半徑作圓,交CD于點E,連接OE、AE,過點E作直線EF交BC于 點F,且CEF=2DAE.

(1)求證:直線EF為O的切線;

(2)在點O的運動過程中,設DE=x,解決下列問題:

求OD·CF的最大值,并求此時半徑的長;

試猜想并證明CEF的周長為定值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】下列說法正確的是(

A. 菱形的對角線垂直且相等

B. 到線段兩端點距離相等的點,在線段的垂直平分線上

C. 角的平分線就是角的對稱軸

D. 形狀相同的兩個三角形就是全等三角形

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某碼頭上有20名工人裝載一批貨物,已知每人往一艘輪船上裝載2噸貨物,裝載完畢恰好用了6天,輪船到達目的地后,另一批工人開始卸貨,計劃平均每天卸貨v噸,剛要卸貨時遇到緊急情況,要求船上的貨物卸載完畢不超過4天,則這批工人實際每天至少應卸貨(  )

A. 30 B. 40 C. 50 D. 60

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在△ABC中,∠B=∠C,∠BAD=34°,且∠ADE=∠AED,則∠CDE=度.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,∠MON=90°,點A,B分別在射線OM、ON上移動,BE是∠ABN的平分線,BE的反向延長線與∠OAB平分線相交于點C,試問:∠ACB的大小是否發(fā)生變化?如果保持不變,請給出證明;如果隨點A、B移動發(fā)生變化,請求出變化范圍.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】一個數(shù)的平方和它的倒數(shù)相等,則這個數(shù)是(
A.1
B.﹣1
C.±1
D.±1和0

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,直線AB,CD相交于點O,OA平分∠EOC.

(1)若∠EOC=72°,求∠BOD的度數(shù);
(2)若∠DOE=2∠AOC,判斷射線OE,OD的位置關系并說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】點P(3,﹣4)關于y軸的對稱點P′的坐標是(  。

A. (﹣3,﹣4) B. (3,4) C. (﹣3,4) D. (﹣4,3)

查看答案和解析>>

同步練習冊答案