如圖,已知∠ABC是直角,在射線BC上取一點O為圓心、BO為半徑畫圓,射線BA繞點B順時針旋轉______度時與⊙O相切,并說明理由.

【答案】分析:將射線BA繞點B順時針旋轉60°時,記為射線BE,作OD⊥BE,垂足為D,在直角三角形BOD中,證明圓心到直線的距離等于半徑即可證得.
解答:解:射線BA繞點B順時針旋轉60或120度時與圓O相切.
證明:將射線BA繞點B順時針旋轉60°時,記為射線BE,
作OD⊥BE,垂足為D,
∵在直角三角形BOD中,∠DBO=∠ABO-60°=30°,
∴OD=BO,即為⊙O的半徑,
∴BE與⊙O相切.
射線BA繞點B順時針旋轉120°時,同理可證.
故答案是:60或120.
點評:本題主要考查了切線的判定,通過作輔助線轉化為解直角三角形是解題的關鍵.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

如圖,已知△ABC是邊長為4的正三角形,AB在x軸上,點C在第一象限,AC與y軸交于點D,點A精英家教網(wǎng)的坐標為(-1,0).
(1)寫出B,C,D三點的坐標;
(2)若拋物線y=ax2+bx+c經(jīng)過B,C,D三點,求此拋物線的解析式.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,已知△ABC是等邊三角形,AB交⊙O于點D,DE⊥AC于點E.
(1)求證:DE為⊙O的切線.
(2)已知DE=3,求:弧BD的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,已知△ABC是等邊三角形,E是AC延長線上一點,選擇一點D,使得△CDE是等邊三角形,如果M是線段AD的中點,N是線段BE的中點,
求證:△CMN是等邊三角形.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2012•襄城區(qū)模擬)如圖,已知△ABC是等邊三角形,D、E分別在邊BC、AC上,且CD=CE,連接DE并延長至點F,使EF=AE,連接AF、BE和CF.
(1)求證:△BCE≌△FDC;
(2)判斷四邊形ABDF是怎樣的四邊形,并說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2013•奉賢區(qū)二模)如圖,已知△ABC是等邊三角形,點D是BC延長線上的一個動點,以AD為邊作等邊△ADE,過點E作BC的平行線,分別交AB,AC的延長線于點F,G,聯(lián)結BE.
(1)求證:△AEB≌△ADC;
(2)如果BC=CD,判斷四邊形BCGE的形狀,并說明理由.

查看答案和解析>>

同步練習冊答案