已知一次函數(shù)的圖象與軸交于點(diǎn),與軸交于點(diǎn).
(1)求,兩點(diǎn)的坐標(biāo);
(2)過(guò)點(diǎn)作直線P與x軸交于點(diǎn),且使△AP的面積為2,求點(diǎn)P的坐標(biāo).
(1)A點(diǎn)坐標(biāo)為(﹣2,0),B點(diǎn)坐標(biāo)為(0,1);(2)點(diǎn)P的坐標(biāo)為(﹣6,0),(2,0)
解析試題分析:(1)先令y=0,求出x的值;再令x=0,求出y的值即可得出A,B兩點(diǎn)的坐標(biāo);
(2))根據(jù)△ABP的面積為2,OB=1可求出AP的長(zhǎng),進(jìn)而得出點(diǎn)P的坐標(biāo).
試題解析:(1)令y=0,則x=﹣2;令x=0,則y=1;
∴A點(diǎn)坐標(biāo)為(﹣2,0);B點(diǎn)坐標(biāo)為(0,1);
(2)∵△ABP的面積為2,
∴OB•AP=2.
又∵OB=1,
∴AP=4.
∴點(diǎn)P的坐標(biāo)為(﹣6,0),(2,0).
考點(diǎn):一次函數(shù)圖象上點(diǎn)的坐標(biāo)特征
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:填空題
如圖,M為雙曲線上的一點(diǎn),過(guò)點(diǎn)M作x軸、y軸的垂線,分別交直線于D、C兩點(diǎn),若直線與y軸交于點(diǎn)A,與x軸相交于點(diǎn)B.則AD•BC的值為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:填空題
M(1,a)是一次函數(shù)與反比例函數(shù)圖象的公共點(diǎn),若將一次函數(shù)的圖象向下平移4個(gè)單位,則它與反比例函數(shù)圖象的交點(diǎn)坐標(biāo)為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖,在平面直角坐標(biāo)系中,正方形OABC的邊長(zhǎng)為a.直線y=bx+c交x軸于E,交y軸于F,且a、b、c分別滿足-(a-4)2≥0,
(1)求直線y=bx+c的解析式并直接寫(xiě)出正方形OABC的對(duì)角線的交點(diǎn)D的坐標(biāo);
(2)直線y=bx+c沿x軸正方向以每秒移動(dòng)1個(gè)單位長(zhǎng)度的速度平移,設(shè)平移的時(shí)間為t秒,問(wèn)是否存在t的值,使直線EF平分正方形OABC的面積?若存在,請(qǐng)求出t的值;若不存在,請(qǐng)說(shuō)明理由;
點(diǎn)P為正方形OABC的對(duì)角線AC上的動(dòng)點(diǎn)(端點(diǎn)A、C除外),PM⊥PO,交直線AB于M,求的值
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
在平面直角坐標(biāo)系系xOy中,直線y=2x+m與y軸交于點(diǎn)A,與直線y=﹣x+4交于點(diǎn)B(3,n),P為直線y=﹣x+4上一點(diǎn).
(1)求m,n的值;
(2)當(dāng)線段AP最短時(shí),求點(diǎn)P的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖,直線y=kx﹣2與x軸交于點(diǎn)A(1,0),與y軸交于點(diǎn)B,若直線AB上的點(diǎn)C在第一象限,且S△BOC=3,求點(diǎn)C的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖,已知反比例函數(shù)y=與一次函數(shù)y=kx+b的圖象相交于A(4,1)、B(a,2)兩點(diǎn),一次函數(shù)的圖象與y軸的交點(diǎn)為C.
(1)求反比例函數(shù)和一次函數(shù)的解析式;
(2)若點(diǎn)D的坐標(biāo)為(1,0),求△ACD的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖,直線y=x+b(b≠0)交坐標(biāo)軸于A、B兩點(diǎn),點(diǎn)D在直線上,D的橫縱坐標(biāo)之積為2,過(guò)D作兩坐標(biāo)軸的垂線DC、DE,連接OD.
(1)求證:AD平分∠CDE;
(2)對(duì)任意的實(shí)數(shù)b(b≠0),求證:AD•BD為定值;
(3)是否存在直線AB,使得四邊形OBCD為平行四邊形?若存在,求出直線的解析式;若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖,在平面直角坐標(biāo)系中,一次函數(shù)(a為常數(shù))的圖象與y軸相交于點(diǎn)A,與函數(shù)的圖象相交于點(diǎn)B,.
(1)求點(diǎn)B的坐標(biāo)及一次函數(shù)的解析式;
(2)若點(diǎn)P在y軸上,且△PAB為直角三角形,請(qǐng)直接寫(xiě)出點(diǎn)P的坐標(biāo).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com