【題目】如圖,在邊長為1的小正方形網(wǎng)格中,點(diǎn)A,B,C,D都在這些小正方形上,AB與CD相交于點(diǎn)O,則tan∠AOD等于( )
A. B. 2C. 1D.
【答案】B
【解析】
連接BE,與CD交于點(diǎn)F,根據(jù)正方形的性質(zhì)可得BF=CF,證明△ACO∽△BHO,根據(jù)相似三角形的性質(zhì)可得HO:CO=BH:AC=1:3,得到
在Rt△OBF中,求出tan∠BOF==2,即可求出tan∠AOD.
解:如圖,連接BE,與CD交于點(diǎn)F,
∵四邊形BCEH是正方形,
∴,CH=BE,BE⊥CH,
∴BF=CF,
∵AC∥BH,
∴△ACO∽△BHO,
∴HO:CO=BH:AC=1:3,
∵CF=HF,
∴HO:HF=1:2,
∴
在Rt△OBF中,tan∠BOF==2,
∵∠AOD=∠BOF,
∴tan∠AOD=2.
故選:B.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】初二年級教師對試卷講評課中學(xué)生參與的深度與廣度進(jìn)行評價(jià)調(diào)査,其評價(jià)項(xiàng)目為主動質(zhì)疑、獨(dú)立思考、專注聽講、講解題目四項(xiàng).評價(jià)組隨機(jī)抽取了若干名初二學(xué)生的參與情況,繪制成如圖所示的頻數(shù)分布直方圖和扇形統(tǒng)計(jì)圖(均不完整),請根據(jù)圖中所給信息解答下列問題:
(1)在這次評價(jià)中,一共抽査了 名學(xué)生;
(2)在扇形統(tǒng)計(jì)圖中,項(xiàng)目“主動質(zhì)疑”所在的扇形的圓心角的度數(shù)為 度;
(3)請將頻數(shù)分布直方圖補(bǔ)充完整:
(4)如果全市有30000名初二學(xué)生,那么在試卷評講課中,請估計(jì)“獨(dú)立思考”的約有多少人?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】央視“經(jīng)典詠流傳”開播以來受到社會廣泛關(guān)注.我市某校就“中華文化我傳承——地方戲曲進(jìn)校園”的喜愛情況進(jìn)行了隨機(jī)調(diào)查,對收集的信息進(jìn)行統(tǒng)計(jì),繪制了下面兩副尚不完整的統(tǒng)計(jì)圖.請你根據(jù)統(tǒng)計(jì)圖所提供的信息解答下列問題:
圖中A表示“很喜歡”,B表示“喜歡”,C表示“一般”,D表示“不喜歡”.
(1)被調(diào)查的總?cè)藬?shù)是_____________人,扇形統(tǒng)計(jì)圖中C部分所對應(yīng)的扇形圓心角的度數(shù)為_______.
(2)補(bǔ)全條形統(tǒng)計(jì)圖;
(3)若該校共有學(xué)生1800人,請根據(jù)上述調(diào)查結(jié)果,估計(jì)該校學(xué)生中A類有__________人;
(4)在抽取的A類5人中,剛好有3個(gè)女生2個(gè)男生,從中隨機(jī)抽取兩個(gè)同學(xué)擔(dān)任兩角色,用樹形圖或列表法求出被抽到的兩個(gè)學(xué)生性別相同的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四邊形ABCD中,AC平分∠BCD,AC⊥AB,E是BC的中點(diǎn),AD⊥AE.
(1)求證:AC2=CD·BC;
(2)過E作EG⊥AB,并延長EG至點(diǎn)K,使EK=EB.
①若點(diǎn)H是點(diǎn)D關(guān)于AC的對稱點(diǎn),點(diǎn)F為AC的中點(diǎn),求證:FH⊥GH;
②若∠B=30°,求證:四邊形AKEC是菱形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在2018年“新技術(shù)支持未來教育”的教師培訓(xùn)活動中,會議就“面向未來的學(xué)校教育、家庭教育及實(shí)踐應(yīng)用演示”等問題進(jìn)行了互動交流,記者隨機(jī)采訪了部分參會教師,對他們發(fā)言的次數(shù)進(jìn)行了統(tǒng)計(jì),并繪制了不完整的統(tǒng)計(jì)表和條形統(tǒng)計(jì)圖.
組別 | 發(fā)言次數(shù)n | 百分比 |
A | 0≤n<3 | 10% |
B | 3≤n<6 | 20% |
C | 6≤n<9 | 25% |
D | 9≤n<12 | 30% |
E | 12≤n<15 | 10% |
F | 15≤n<18 | m% |
請你根據(jù)所給的相關(guān)信息,解答下列問題:
(1)本次共隨機(jī)采訪了 _____ 名教師,m= _____ ;
(2)補(bǔ)全條形統(tǒng)計(jì)圖;
(3)已知受訪的教師中,E組只有2名女教師,F組恰有1名男教師,現(xiàn)要從E組、F組中分別選派1名教師寫總結(jié)報(bào)告,請用列表法或畫樹狀圖的方法,求所選派的兩名教師恰好是1男1女的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在美化校園的活動中,某興趣小組想借助如圖所示的直角墻角(兩邊足夠長),用28m長的籬笆圍成一個(gè)矩形花園ABCD(籬笆只圍AB,BC兩邊),設(shè)AB=xm,花園的面積為Sm2.
(1)若花園的面積為192m2,求x的值;
(2)寫出花園面積S與x的函數(shù)關(guān)系式.x為何值時(shí),花園面積S有最大值?最大值為多少?
(3)若在P處有一棵樹與墻CD,AD的距離分別是a(14≤a≤22)和6m,要將這棵樹圍在花園內(nèi)(含邊界,不考慮樹的粗細(xì)),設(shè)花園面積S的最大值為y,直接寫出y與a的關(guān)系式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某市舉行“行動起來,對抗霧霾”為主題的植樹活動,某街道積極響應(yīng),決定對該街道進(jìn)行綠化改造,共購進(jìn)甲、乙兩種樹共50棵,已知甲樹每棵800元,乙樹每棵1200元.
(1)若購買兩種樹的總金額為56000元,求甲、乙兩種樹各購買了多少棵?
(2)若購買甲樹的金額不少于購買乙樹的金額,至少應(yīng)購買甲樹多少棵?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線l1的解析表達(dá)式為:y=﹣3x+3,且l1與x軸交于點(diǎn)D,直線l2經(jīng)過點(diǎn)A、B,直線l1,l2交于點(diǎn)C.
(1)求點(diǎn)D的坐標(biāo);
(2)求直線l2的解析表達(dá)式;
(3)求△ADC的面積;
(4)在l2上存在異于點(diǎn)C的另一點(diǎn)P,使得△ADP與△ADC面積相等,求點(diǎn)P的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,已知A(,y1),B(2,y2)為反比例函數(shù)圖像上的兩點(diǎn),動點(diǎn)P(x,0)在x正半軸上運(yùn)動,當(dāng)線段AP與線段BP之差達(dá)到最大時(shí),點(diǎn)P的坐標(biāo)是( )
A. (,0) B. (1,0) C. (,0) D. (,0)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com