【題目】如圖,在⊙O的內(nèi)接△ABC中,∠CAB=90°,AB=2AC,過(guò)點(diǎn)A作BC的垂線m交⊙O于另一點(diǎn)D,垂足為H,點(diǎn)E為上異于A,B的一個(gè)動(dòng)點(diǎn),射線BE交直線m于點(diǎn)F,連接AE,連接DE交BC于點(diǎn)G.
(1)求證:△FED∽△AEB;
(2)若=,AC=2,連接CE,求AE的長(zhǎng);
(3)在點(diǎn)E運(yùn)動(dòng)過(guò)程中,若BG=CG,求tan∠CBF的值.
【答案】(1)見解析;(2);(3)
【解析】
(1)根據(jù)同角的余角重疊得出∠EAB=∠ECB,然后根據(jù)三角形相似的判定定理判定即可得出結(jié)論;
(2)根據(jù)相交弦定理得出DH=AH=,再根據(jù)勾股定理得,BH=,進(jìn)而求出BE=CE=,進(jìn)而求出EF=,FD=,借助(1)的結(jié)論即可得出結(jié)論;
(3)根據(jù)平行線分線段成比例得出判,根據(jù)平行線的性質(zhì)得出tan∠CBF=tan∠CGT=,根據(jù)圓周角定理得出tan∠CED=tan∠ABC,進(jìn)而得出,再結(jié)合已知條件,即可得出結(jié)論.
解:(1)∵⊙O的內(nèi)接△ABC中,∠CAB=90°,
∴BC是⊙O的直徑,
∵點(diǎn)E為上異于A,B的一個(gè)動(dòng)點(diǎn),
∴∠CEB=90°,
∴∠ECB+∠EBC=90°,
∵過(guò)點(diǎn)A作BC的垂線m交⊙O于另一點(diǎn)D,垂足為H,
∴∠FHB=90°,
∴∠FBH+∠HFB=90°,
∴∠HFB=∠ECB,
∵∠EAB=∠ECB,
∴∠EAB=∠HFB,
∵∠FBA=∠ADE,
∴△FED∽△AEB;
(2)∵∠CAB=90°,AB=2AC,AC=2,
∴AB=4,
根據(jù)勾股定理得,BC=2,
∵AD⊥BC,BC是⊙O的切線,
∴DH=AH===,
在Rt△AHB中,根據(jù)勾股定理得,BH==,
∵,BC是⊙O的直徑,
∴BE=CE,∠ECB=∠EBC=45°,
∵BC=2,∠BEC=90°,
∴BE=CE=,
∵∠FHB=90°,∠EBC=45°,BH=,
∴FH=BH=,BF=,
∴EF=BF﹣BE=,FD=FH+DH=,
∵△FED∽△AEB,
∴,
∴,
∴AE=;
(3)如圖,過(guò)點(diǎn)G作GT⊥CE于T,
∵∠CEB=90°,
∴TG∥EB,
∴,∠CGT=∠CBF,
∴tan∠CBF=tan∠CGT=,
∵,
∴∠CED=∠ABC,
∴tan∠CED=tan∠ABC,
∴,
∵,BG=CG,
∴ET=CT,,
∴,
∴tan∠CBF=tan∠CGT=.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某市水果批發(fā)欲將A市的一批水果運(yùn)往本市銷售,有火車和汽車兩種運(yùn)輸方式,運(yùn)輸過(guò)程中的損耗均為200元/時(shí),其它主要參考數(shù)據(jù)如下:
運(yùn)輸工具 | 途中平均速度(千米/時(shí)) | 運(yùn)費(fèi)(元/千米) | 裝卸費(fèi)用(元) |
火車 | 100 | 15 | 2000 |
汽車 | 80 | 20 | 900 |
(1) 如果汽車的總支出費(fèi)用比火車費(fèi)用多1100元,你知道本市與A市之間的路程是多少千米嗎?請(qǐng)你列方程解答.(總支出包含損耗、運(yùn)費(fèi)和裝卸費(fèi)用)
(2) 如果A市與B市之間的距離為S千米,你若是A市水果批發(fā)部門的經(jīng)理,要想將這種水果運(yùn)往B市銷售,試分析以上兩種運(yùn)輸工具中選擇哪種運(yùn)輸方式比較合算呢?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,點(diǎn)C是⊙O的直徑AB延長(zhǎng)線上一點(diǎn),過(guò)⊙O上一點(diǎn)D作DF⊥AB于F,交⊙O于點(diǎn)E,點(diǎn)M是BE的中點(diǎn),AB=4,∠E=∠C=30°.
(1)求證:CD是⊙O的切線;
(2)求DM的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某企業(yè)設(shè)計(jì)了一款工藝品,每件的成本是50元,為了合理定價(jià),投放市場(chǎng)進(jìn)行試銷.據(jù)市場(chǎng)調(diào)查,銷售單價(jià)是100元時(shí),每天的銷售量是50件,而銷售單價(jià)每降低1元,每天就可多售出5件,但要求銷售單價(jià)不得低于成本.
求出每天的銷售利潤(rùn)元與銷售單價(jià)元之間的函數(shù)關(guān)系式;
求出銷售單價(jià)為多少元時(shí),每天的銷售利潤(rùn)最大?最大利潤(rùn)是多少?
如果該企業(yè)要使每天的銷售利潤(rùn)不低于4000元,且每天的總成本不超過(guò)7000元,那么銷售單價(jià)應(yīng)控制在什么范圍內(nèi)?每天的總成本每件的成本每天的銷售量
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知正方形ABCD的頂點(diǎn)D關(guān)于射線CP的對(duì)稱點(diǎn)G落在正方形內(nèi),連接BG并延長(zhǎng)交邊AD于點(diǎn)E,交射線CP于點(diǎn)F.連接DF,AF,CG.
(1)試判斷DF與BF的位置關(guān)系,并說(shuō)明理由;
(2)若CF=4,DF=2,求AE的長(zhǎng);
(3)若∠ADF=2∠FAD,求tan∠FAD的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1,在矩形中,,點(diǎn)是線段上的一個(gè)動(dòng)點(diǎn),以點(diǎn)為圓心,為半徑作,連接.
(1)當(dāng)經(jīng)過(guò)的中點(diǎn)時(shí),的長(zhǎng)為_ ;
(2)當(dāng)平分時(shí),判斷與的位置關(guān)系.說(shuō)明理由,并求出的長(zhǎng);
(3)如圖2,當(dāng)與交于兩點(diǎn),且時(shí),求點(diǎn)到的距離.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某商店準(zhǔn)備進(jìn)一批季節(jié)性小家電,每個(gè)進(jìn)價(jià)為40元,經(jīng)市場(chǎng)預(yù)測(cè),銷售定價(jià)為50元,可售出400個(gè);定價(jià)每增加1元,銷售量將減少10個(gè).設(shè)每個(gè)定價(jià)增加x元.
(1)寫出售出一個(gè)可獲得的利潤(rùn)是多少元(用含x的代數(shù)式表示)?
(2)商店若準(zhǔn)備獲得利潤(rùn)6000元,并且使進(jìn)貨量較少,則每個(gè)定價(jià)為多少元?應(yīng)進(jìn)貨多少個(gè)?
(3)商店若要獲得最大利潤(rùn),則每個(gè)應(yīng)定價(jià)多少元?獲得的最大利潤(rùn)是多少?
【答案】(1)x+10元;(2)每個(gè)定價(jià)為70元,應(yīng)進(jìn)貨200個(gè).(3)每個(gè)定價(jià)為65元時(shí)得最大利潤(rùn),可獲得的最大利潤(rùn)是6250元.
【解析】試題分析:(1)根據(jù)利潤(rùn)=銷售價(jià)-進(jìn)價(jià)列關(guān)系式,(2)總利潤(rùn)=每個(gè)的利潤(rùn)×銷售量,銷售量為400-10x,列方程求解,根據(jù)題意取舍,(3)利用函數(shù)的性質(zhì)求最值.
試題解析:由題意得:(1)50+x-40=x+10(元),
(2)設(shè)每個(gè)定價(jià)增加x元,
列出方程為:(x+10)(400-10x)=6000,解得:x1=10,x2=20,要使進(jìn)貨量較少,則每個(gè)定價(jià)為70元,應(yīng)進(jìn)貨200個(gè),
(3)設(shè)每個(gè)定價(jià)增加x元,獲得利潤(rùn)為y元,
y=(x+10)(400-10x)=-10x2+300x+4000=-10(x-15)2+6250,當(dāng)x=15時(shí),y有最大值為6250,所以每個(gè)定價(jià)為65元時(shí)得最大利潤(rùn),可獲得的最大利潤(rùn)是6250元.
【題型】解答題
【結(jié)束】
24
【題目】猜想與證明:
如圖1,擺放矩形紙片ABCD與矩形紙片ECGF,使B、C、G三點(diǎn)在一條直線上,CE在邊CD上,連接AF,若M為AF的中點(diǎn),連接DM、ME,試猜想DM與ME的關(guān)系,并證明你的結(jié)論.
拓展與延伸:
(1)若將”猜想與證明“中的紙片換成正方形紙片ABCD與正方形紙片ECGF,其他條件不變,則DM和ME的關(guān)系為 .
(2)如圖2擺放正方形紙片ABCD與正方形紙片ECGF,使點(diǎn)F在邊CD上,點(diǎn)M仍為AF的中點(diǎn),試證明(1)中的結(jié)論仍然成立.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】目前,某校九年級(jí)同學(xué)對(duì)“新冠疫情下停課不停學(xué)”線上學(xué)習(xí)的家長(zhǎng)進(jìn)行問卷調(diào)查,隨機(jī)調(diào)查了若干名家長(zhǎng)對(duì)線上學(xué)習(xí)的態(tài)度(態(tài)度分為:A.無(wú)所謂;B.基本贊成;C.反對(duì);D.贊成).并將調(diào)查結(jié)果繪制成頻數(shù)折線統(tǒng)計(jì)圖1和扇形統(tǒng)計(jì)圖2(不完整).請(qǐng)根據(jù)圖中提供的信息,解答下列問題:
(1)此次抽樣調(diào)查中,共調(diào)查了多少名中學(xué)生家長(zhǎng);
(2)求出圖2中扇形C所對(duì)的圓心角度數(shù),并將圖1補(bǔ)充完整;
(3)在此次調(diào)查活動(dòng)中,初三(1)班有A1、A2兩位家長(zhǎng)對(duì)線上學(xué)習(xí),持基本贊成的態(tài)度,初三(2)班有B1、B2兩位學(xué)生家長(zhǎng)對(duì)線上學(xué)習(xí),也持基本贊成的態(tài)度,現(xiàn)從這4位家長(zhǎng)中選2位家長(zhǎng)參加學(xué)校組織的家;顒(dòng),用列表法或畫樹狀圖的方法求出選出的2人來(lái)自不同班級(jí)的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,等邊三角形內(nèi)接于,點(diǎn)是上兩點(diǎn),且,若,則圖中陰影部分的面積為_____.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com