【題目】如圖,EF∥AB,∠DCB=65°,∠CBF=15°,∠EFB=130°.
(1)直線CD與AB平行嗎?為什么?
(2)若∠CEF=68°,求∠ACB的度數(shù).
【答案】(1)CD與AB平行,見解析;(2)47°
【解析】
(1)根據(jù)兩直線平行、同旁內(nèi)角互補求出∠ABF,得到∠ABC,根據(jù)內(nèi)錯角相等、兩直線平行證明;
(2)根據(jù)兩直線平行、同旁內(nèi)角互補求出∠DCE,計算即可.
(1)CD與AB平行,理由如下:
∵EF∥AB,
∴∠EFB+∠ABF=180°,
∴∠ABF=180°﹣130°=50°,
∴∠ABC=∠ABF+∠CBF=65°,
∴∠ABC=∠DCB,
∴CD∥AB;
(2)∵CD∥EF,
∴∠DCE+∠CEF=180°,
∴∠DCE=180°﹣68°=112°,
∴∠ACB=∠DCE﹣∠DCB=47°.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】若有a,b兩個數(shù),滿足關(guān)系式:a+b=ab﹣1,則稱a,b為“共生數(shù)對”,記作(a,b).
例如:當(dāng)2,3滿足2+3=2×3﹣1時,則(2,3)是“共生數(shù)對”.
(1)若(x,﹣2)是“共生數(shù)對”,求x的值;
(2)若(m,n)是“共生數(shù)對”,判斷(n,m)是否也是“共生數(shù)對”,請通過計算說明.
(3)請再寫出兩個不同的“共生數(shù)對”
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知表示5與-2之差的絕對值,實際上也可理解為5與-2兩數(shù)在數(shù)軸上所對應(yīng)的兩點之間的距離請試著探索:
(1)找出所有符合條件的整數(shù),使,這樣的整數(shù)是__________;
(2)利用數(shù)軸找出,當(dāng)時,的值是__________;
(3)利用數(shù)軸找出,當(dāng)取最小值時,的范圍是__________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(1)探究新知:如圖1,已知與的面積相等,試判斷與的位置關(guān)系,并說明理由.
(2)結(jié)論應(yīng)用:
①如圖2,點,在反比例函數(shù)的圖像上,過點作軸,過點作軸,垂足分別為,,連接.試證明:.
②若①中的其他條件不變,只改變點,的位置如圖3所示,請畫出圖形,判斷與的位置關(guān)系并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】《教育導(dǎo)報》記者就四川省農(nóng)村中小學(xué)教師閱讀狀況進行了一次問卷調(diào)查,并根據(jù)調(diào)查結(jié)果繪制了教師每年閱讀書籍?dāng)?shù)量的統(tǒng)計圖(不完整).設(shè)x表示閱讀書籍的數(shù)量(x為正整數(shù),單位:本).其中A:1≤x≤3; B:4≤x≤6; C:7≤x≤9;D:x≥10.請你根據(jù)兩幅圖提供的信息解答下列問題:
(1)本次共調(diào)查了多少名教師?
(2)補全條形統(tǒng)計圖;
(3)計算扇形統(tǒng)計圖中扇形D的圓心角的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,菱形ABCD的頂點A在x軸負半軸上,頂點B在x軸正半軸上.若拋物線p=ax2-10ax+8(a>0)經(jīng)過點C、D,則點B的坐標(biāo)為________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】書店舉行購書優(yōu)惠活動:
①一次性購書不超過100元,不享受打折優(yōu)惠;
②一次性購書超過100元但不超過200元,一律按原價打九折;
③一次性購書超過200元,一律按原價打七折.
小麗在這次活動中,兩次購書總共付款229.4元,第二次購書原價是第一次購書原價的3倍,那么小麗這兩次購書原價的總和是_________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖是二次函數(shù)y=ax2+bx+c圖象的一部分,其對稱軸為x=-1,且過點(-3,0).下列說法:①abc<0;②2a-b=0;③4a+2b+c<0;④3a+c=0;則其中說法正確的是( ).
A. ①② B. ②③ C. ①②④ D. ②③④
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖,△ABC和△ADE是等腰直角三角形,∠BAC=∠DAE=90°,點C、D、E三點在同一直線上,連接BD.
(1)求證:△BAD≌△CAE;
(2)試猜想BD、CE有何特殊位置關(guān)系,并證明.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com