【題目】如圖,中,,平分交于點(diǎn),于點(diǎn),如果,,那么的長(zhǎng)為________,的長(zhǎng)為_______.
【答案】4 3
【解析】
依據(jù)△ACD≌△AED(AAS),即可得到AC=AE=6cm,CD=ED,再根據(jù)勾股定理可得AB的長(zhǎng),進(jìn)而得出EB的長(zhǎng);設(shè)DE=CD=x,則BD=8-x,依據(jù)勾股定理可得,Rt△BDE中,DE2+BE2=BD2,解方程即可得到DE的長(zhǎng).
∵AD平分∠CAB,
∴∠CAD=∠EAD,
又∵∠C=90°,DE⊥AB,
∴∠C=∠AED=90°,
又∵AD=AD,
∴△ACD≌△AED(AAS),
∴AC=AE=6cm,CD=ED,
∵Rt△ABC中,AB==10(cm),
∴BE=AB-AE=10-6=4(cm),
設(shè)DE=CD=x,則BD=8-x,
∵Rt△BDE中,DE2+BE2=BD2,
∴x2+42=(8-x)2,
解得x=3,
∴DE=3cm,
故答案為:4,3.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】釣魚島自古就是中國(guó)的領(lǐng)土,中國(guó)有關(guān)部門已對(duì)釣魚島及其附屬島嶼開展常態(tài)化監(jiān)視監(jiān)測(cè).一日,中國(guó)一艘海監(jiān)船從A點(diǎn)沿正北方向巡航,其航線距釣魚島(設(shè)M,N為該島的東西兩端點(diǎn))最近距離為14.4km(即MC=14.4km).在A點(diǎn)測(cè)得島嶼的西端點(diǎn)M在點(diǎn)A的北偏東42°方向;航行4km后到達(dá)B點(diǎn),測(cè)得島嶼的東端點(diǎn)N在點(diǎn)B的北偏東56°方向,(其中N,M,C在同一條直線上),求釣魚島東西兩端點(diǎn)MN之間的距離(結(jié)果精確到0.1km).(參考數(shù)據(jù):sin42°≈0.67,cos42°≈0.74,tan42°≈0.90,sin56°≈0.83,cos56°≈0.56,tan56°≈1.48)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】根據(jù)要求回答問題:
(1)已知:等邊△ABC的邊長(zhǎng)為4,點(diǎn)P在線段AB上,點(diǎn)D在線段AC上,且△PDE為等邊三角形,當(dāng)點(diǎn)P與點(diǎn)B重合時(shí)(如圖1),AD+AE的值為;
(2)[類比探究]在上面的問題中,如果把點(diǎn)P沿BA方向移動(dòng),使PB=1,其余條件不變(如圖2),AD+AE的值是多少?請(qǐng)寫出你的計(jì)算過程;
(3)[拓展遷移]如圖3,△ABC中,AB=BC,∠ABC=a,點(diǎn)P在線段BA延長(zhǎng)線上,點(diǎn)D在線段CA延長(zhǎng)線上,在△PDE中,PD=PE,∠DPE=a,設(shè)AP=m,則線段AD、AE有怎樣的等量關(guān)系?請(qǐng)用含m,a的式子直接寫出你的結(jié)論.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,分別以點(diǎn)A和點(diǎn)B為圓心,以大于 AB的長(zhǎng)為半徑畫弧,兩弧相交于點(diǎn)M、N,作直線MN,交BC于點(diǎn)D,若△ADC的周長(zhǎng)為10,AB=6,則△ABC的周長(zhǎng)為( )
A.6
B.12
C.16
D.20
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某學(xué)校對(duì)初中畢業(yè)班經(jīng)過初步比較后,決定從九年級(jí)(1)、(4)、(8)班這三個(gè)班中推薦一個(gè)班為市級(jí)先進(jìn)班集體的候選班,現(xiàn)對(duì)這三個(gè)班進(jìn)行綜合素質(zhì)考評(píng),下表是它們五項(xiàng)素質(zhì)考評(píng)的得分表:(以分為單位,每項(xiàng)滿分為10分)
班 級(jí) | 行為規(guī)范 | 學(xué)習(xí)成績(jī) | 校運(yùn)動(dòng)會(huì) | 藝術(shù)獲獎(jiǎng) | 勞動(dòng)衛(wèi)生 |
九年級(jí)(1)班 | 10 | 10 | 6 | 10 | 7 |
九年級(jí)(4)班 | 10 | 8 | 8 | 9 | 8 |
九年級(jí)(8)班 | 9 | 10 | 9 | 6 | 9 |
(1)請(qǐng)問各班五項(xiàng)考評(píng)分的平均數(shù)、中位數(shù)和眾數(shù)中哪個(gè)統(tǒng)計(jì)量不能反映三個(gè)班的考評(píng)結(jié)果的差異?并從中選擇一個(gè)能反映差異的統(tǒng)計(jì)量將他們的得分進(jìn)行排序.
(2)根據(jù)你對(duì)表中五個(gè)項(xiàng)目的重要程度的認(rèn)識(shí),設(shè)定一個(gè)各項(xiàng)考評(píng)內(nèi)容的占分比例(比例的各項(xiàng)須滿足:①均為整數(shù);②總和為10;③不全相同),按這個(gè)比例對(duì)各班的得分重新計(jì)算,比較出大小關(guān)系,并從中推薦一個(gè)得分最高的班作為市級(jí)先進(jìn)班集體的候選班.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】矩形紙片ABCD中,AB=5,AC=3,將紙片折疊,使點(diǎn)B落在邊CD上的B′處,折痕為AE.在折痕AE上存在一點(diǎn)P到邊CD的距離與到點(diǎn)B的距離相等,則此相等距離為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】數(shù)學(xué)課上,老師給出了如下問題:
已知:如圖1,在Rt△ABC中,∠C=90°,AC=BC,延長(zhǎng)CB到點(diǎn)D,∠DBE=45°,點(diǎn)F是邊BC上一點(diǎn),連結(jié)AF,作FE⊥AF,交BE于點(diǎn)E.
(1)求證:∠CAF=∠DFE;
(2)求證:AF=EF.
經(jīng)過獨(dú)立思考后,老師讓同學(xué)們小組交流.小輝同學(xué)說出了對(duì)于第二問的想法:“我想通過構(gòu)造含有邊AF和EF的全等三角形,因此我過點(diǎn)E作EG⊥CD于G(如圖2所示),如果能證明Rt△ACF和Rt△FGE全等,問題就解決了.但是這兩個(gè)三角形證不出來相等的邊,好像這樣作輔助線行不通.”小亮同學(xué)說:“既然這樣作輔助線證不出來,再考慮有沒有其他添加輔助線的方法.”請(qǐng)你順著小亮同學(xué)的思路在圖3中繼續(xù)嘗試,并完成(1)、(2)問的證明.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】A市和B市分別有庫(kù)存的某聯(lián)合收割機(jī)12臺(tái)和6臺(tái),現(xiàn)決定開往C市10臺(tái)和D市8臺(tái),已知從A市開往C市、D市的油料費(fèi)分別為每臺(tái)400元和800元,從B市開往C市和D市的油料費(fèi)分別為每臺(tái)300元和500元.
(1)設(shè)B市運(yùn)往C市的聯(lián)合收割機(jī)為x臺(tái),求運(yùn)費(fèi)w關(guān)于x的函數(shù)關(guān)系式.
(2)若總運(yùn)費(fèi)不超過9000元,問有幾種調(diào)運(yùn)方案?
(3)求出總運(yùn)費(fèi)最低的調(diào)運(yùn)方案,并求出最低運(yùn)費(fèi).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】李大爺要圍成一個(gè)矩形菜園,菜園的一邊利用足夠長(zhǎng)的墻,用籬笆圍成的另外三邊總長(zhǎng)應(yīng)恰好為24米.要圍成的菜園是如圖所示的矩形ABCD.設(shè)BC邊的長(zhǎng)為x米,AB邊的長(zhǎng)為y米,則y與x之間的函數(shù)關(guān)系式是( )
A. y=-2x+24(0<x<12) B. y=-x+12(0<x<24)
C. y=2x-24(0<x<12) D. y=x-12(0<x<24)
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com