【題目】如圖,某水渠的橫斷面是等腰梯形,已知其斜坡AD和BC的坡度為1:0.6,現(xiàn)測(cè)得放水前的水面寬EF為1.2米,當(dāng)水閘放水后,水渠內(nèi)水面寬GH為2.1米 . 求放水后水面上升的高度是( 。
A.0.55
B.0.8
C.0.6
D.0.75
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】(1)觀察推理:如圖 1,△ABC 中,∠ACB=90°,AC=BC,直線 L 過(guò)點(diǎn)C,點(diǎn) A,B 在直線 L 同側(cè),BD⊥L, AE⊥L,垂足分別為D,E
求證:△AEC≌△CDB
(2)類(lèi)比探究:如圖 2,Rt△ABC 中,∠ACB=90°,AC=4,將斜邊 AB 繞點(diǎn) A 逆時(shí)針旋轉(zhuǎn) 90°至 AB’, 連接B’C,求△AB’C 的面積
(3)拓展提升:如圖 3,等邊△EBC 中,EC=BC=3cm,點(diǎn) O 在 BC 上且 OC=2cm,動(dòng)點(diǎn) P 從點(diǎn) E 沿射線EC 以 1cm/s 速度運(yùn)動(dòng),連接 OP,將線段 OP 繞點(diǎn)O 逆時(shí)針旋轉(zhuǎn) 120°得到線段 OF,設(shè)點(diǎn) P 運(yùn)動(dòng)的時(shí)間為t 秒。
當(dāng)t= 秒時(shí),OF∥ED
若要使點(diǎn)F 恰好落在射線EB 上,求點(diǎn)P 運(yùn)動(dòng)的時(shí)間t
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在Rt△ABC中,∠ACB=90°,CD⊥AB于點(diǎn)D , 如果AC=3,AB=6,那么AD的值為( 。
A.
B.
C.
D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】下列命題的逆命題不成立的是( )
A. 如果兩個(gè)數(shù)互為相反數(shù),那么它們的和等于0
B. 如果兩個(gè)角相等,那么這兩個(gè)角的補(bǔ)角也相等
C. 如果兩個(gè)數(shù)相等,那么它們的平方相等
D. 如果|a|=|b|,那么a=b
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】數(shù)學(xué)課外興趣小組的同學(xué)們要測(cè)量被池塘相隔的兩棵樹(shù)A.B的距離,他們?cè)O(shè)計(jì)了如圖所示的測(cè)量方案:從樹(shù)A沿著垂直于AB的方向走到E , 再?gòu)?/span>E沿著垂直于AE的方向走到F , C為AE上一點(diǎn),其中3位同學(xué)分別測(cè)得三組數(shù)據(jù):①AC , ∠ACB;②EF.DE.AD;③CD , ∠ACB , ∠ADB.其中能根據(jù)所測(cè)數(shù)據(jù)求得A.B兩樹(shù)距離的有( 。
A.0組
B.一組
C.二組
D.三組
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,某漁船在海面上朝正東方向勻速航行,在A處觀測(cè)到燈塔M在北偏東60°方向上,航行半小時(shí)后到達(dá)B處,此時(shí)觀測(cè)到燈塔M在北偏東30°方向上,那么該船繼續(xù)航行到達(dá)離燈塔距離最近的位置所需時(shí)間是( )
A.10分鐘
B.15分鐘
C.20分鐘
D.25分鐘
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖①所示,將直尺擺放在三角板上,使直尺與三角板的邊分別交于點(diǎn)D , E , F , G , 已知∠CGD=42°
(1)求∠CEF的度數(shù);
(2)將直尺向下平移,使直尺的邊緣通過(guò)三角板的頂點(diǎn)B , 交AC邊于點(diǎn)H , 如圖②所示,點(diǎn)H , B在直尺上的度數(shù)分別為4,13.4,求BC的長(zhǎng)(結(jié)果保留兩位小數(shù)).(參考數(shù)據(jù):sin42°≈0.67,cos42°≈0.74,tan42°≈0.90)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,△ABC中,AD是BC邊上的高線,BE是一條角平分線,它們相交于點(diǎn)P , 已知∠EPD=125°,求∠BAD的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】正方形ABCD中,E是AC上一點(diǎn),EF⊥AB , EG⊥AD , AB=6,AE:EC=2:1.求四邊形AFEG的面積.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com