【題目】如圖,一次函數(shù)的圖象與x軸、y軸分別交于AC兩點(diǎn),與反比例函數(shù)的圖象交于B點(diǎn),B點(diǎn)在第四象限,BD垂直平分OA,垂足為D,OB,OABD

1)求該一次函數(shù)和反比例函數(shù)的解析式;

2)延長(zhǎng)BO交反比例函數(shù)的圖象于點(diǎn)E,連接EDEC,求四邊形BCED的面積.

【答案】1y2x4;(26

【解析】

1)首先設(shè)ODt,根據(jù)BD垂直平分OA,OABD,可得出OA2t,BD2t,進(jìn)而得出Bt,﹣2t),又因?yàn)?/span>OB,可得t2+2t2=(2,得出t11,t2=﹣1(舍去),明確兩點(diǎn)坐標(biāo)A2,0),B1,﹣2),再設(shè)反比例函數(shù)解析式為y,把B1,﹣2)代入即可求出反函數(shù)解析式;設(shè)直線AC的解析式為ykx+b,把A2,0),B1,﹣2)代入即可得出一次函數(shù)解析式;

2)根據(jù)點(diǎn)E與點(diǎn)B關(guān)于原點(diǎn)對(duì)稱,可得出E(﹣1,2),當(dāng)x0時(shí),得出C0,﹣4),

即可得出四邊形BCED的面積.

解:(1)設(shè)ODt

BD垂直平分OA,OABD,

OA2tBD2t,

Bt,﹣2t),

OB,

t2+2t2=(2,解得t11,t2=﹣1(舍去),

A2,0),B1,﹣2),

設(shè)反比例函數(shù)解析式為y,

B1,﹣2)代入得m(﹣2)=﹣2,

∴反比例函數(shù)解析式為y=﹣;

設(shè)直線AC的解析式為ykx+b,

A2,0),B1,﹣2)代入得,解得,

∴一次函數(shù)解析式為y2x4;

2)∵點(diǎn)E與點(diǎn)B關(guān)于原點(diǎn)對(duì)稱,

E(﹣1,2),

當(dāng)x0時(shí),y2x4=﹣4,則C0,﹣4),

∴四邊形BCED的面積=SOCE+SBOC+SBDE×4×1+×4×1+×2×26

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系xOy中,點(diǎn)CB,Ey軸上,RtABC經(jīng)過(guò)變化得到RtEDO,若點(diǎn)B的坐標(biāo)為(0,1),OD2,則這種變化可以是(

A.ABC繞點(diǎn)C順時(shí)針旋轉(zhuǎn)90°,再向下平移5個(gè)單位長(zhǎng)度

B.ABC繞點(diǎn)C逆時(shí)針旋轉(zhuǎn)90°,再向下平移5個(gè)單位長(zhǎng)度

C.ABC繞點(diǎn)O順時(shí)針旋轉(zhuǎn)90°,再向左平移3個(gè)單位長(zhǎng)度

D.ABC繞點(diǎn)O逆時(shí)針旋轉(zhuǎn)90°,再向右平移1個(gè)單位長(zhǎng)度

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某中學(xué)部分同學(xué)參加全國(guó)初中數(shù)學(xué)競(jìng)賽,取得了優(yōu)異的成績(jī),指導(dǎo)老師統(tǒng)計(jì)了所有參賽同學(xué)的成績(jī)(成績(jī)都是整數(shù),試題滿分120分),并且繪制了頻率分布直方圖(如圖).請(qǐng)回答:

1)該中學(xué)參加本次數(shù)學(xué)競(jìng)賽的有多少名同學(xué)?

2)如果成績(jī)?cè)?/span>90分以上(含90分)的同學(xué)獲獎(jiǎng),那么該中學(xué)參賽同學(xué)的獲獎(jiǎng)率是多少?

3)這次競(jìng)賽成績(jī)的中位數(shù)落在哪個(gè)分?jǐn)?shù)段內(nèi)?

4)圖中還提供了其它信息,例如該中學(xué)沒(méi)有獲得滿分的同學(xué)等等,請(qǐng)?jiān)賹?xiě)出兩條信息.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】為了弘揚(yáng)傳統(tǒng)文化,提高學(xué)生文明意識(shí),育紅學(xué)校組織全校80個(gè)班級(jí)進(jìn)行誦經(jīng)典,傳文明演講賽,比賽后對(duì)各班成績(jī)進(jìn)行了整理,分成4個(gè)小組(x表示成績(jī),單位:分):A組:60≤x70;B組:70≤x80;C組:80≤x90;D組:90≤x100,并且繪制了如右不完整的扇形統(tǒng)計(jì)圖.請(qǐng)根據(jù)圖中信息,解答下列問(wèn)題:

1)求扇形統(tǒng)計(jì)圖中,B組對(duì)應(yīng)的圓心角是多少度?

2)學(xué)校從D組中選取了2名男生和2名女生組成代表隊(duì)參加了區(qū)級(jí)比賽,由于表現(xiàn)突出,被要求再?gòu)倪@4名學(xué)生中隨機(jī)選取兩名同學(xué)參加市級(jí)比賽,請(qǐng)用列表或畫(huà)樹(shù)狀圖的方法,求恰好選中一名男生和一名女生的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中有一直角三角形AOB,O為坐標(biāo)原點(diǎn),OA=1,tan∠BAO=3,將此三角形繞原點(diǎn)O逆時(shí)針旋轉(zhuǎn)90°,得到△DOC,拋物線yax2+bx+c經(jīng)過(guò)點(diǎn)A、BC

(1)求拋物線的解析式;

(2)若點(diǎn)P是第二象限內(nèi)拋物線上的動(dòng)點(diǎn),其橫坐標(biāo)為t,設(shè)拋物線對(duì)稱軸lx軸交于一點(diǎn)E,連接PE,交CDF,求以C、EF為頂點(diǎn)三角形與△COD相似時(shí)點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,已知AOB,A0,﹣3),B(﹣20).將OAB先繞點(diǎn)B 逆時(shí)針旋轉(zhuǎn)90°得到BO1A1,再把所得三角形向上平移2個(gè)單位得到B1A2O2;

1)在圖中畫(huà)出上述變換的圖形,并涂黑;

2)求OAB在上述變換過(guò)程所掃過(guò)的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在矩形ABCD中,CD3cmBC4cm,連接BD,并過(guò)點(diǎn)CCNBD,垂足為N,直線l垂直BC,分別交BD、BC于點(diǎn)P、Q.直線lAB出發(fā),以每秒1cm的速度沿BC方向勻速運(yùn)動(dòng)到CD為止;點(diǎn)M沿線段DA以每秒1cm的速度由點(diǎn)D向點(diǎn)A勻速運(yùn)動(dòng),到點(diǎn)A為止,直線1與點(diǎn)M同時(shí)出發(fā),設(shè)運(yùn)動(dòng)時(shí)間為t秒(t0).

1)線段CN   ;

2)連接PMQN,當(dāng)四邊形MPQN為平行四邊形時(shí),求t的值;

3)在整個(gè)運(yùn)動(dòng)過(guò)程中,當(dāng)t為何值時(shí)PMN的面積取得最大值,最大值是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖1,ABC是等腰直角三角形,BAC= 90°,AB=AC,四邊形ADEF是正方形,點(diǎn)B、C分別在邊AD、AF上,此時(shí)BD=CF,BDCF成立.

1當(dāng)ABC繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)θ(0°θ<90°)時(shí),如圖2,BD=CF成立嗎?若成立,請(qǐng)證明;若不成立,請(qǐng)說(shuō)明理由.

2當(dāng)ABC繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)45°時(shí),如圖3,延長(zhǎng)DB交CF于點(diǎn)H.

求證:BDCF;

當(dāng)AB=2,AD=3時(shí),求線段DH的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】小明為今年將要參加中考的好友小李制作了一個(gè)(如圖)正方體禮品盒,六面上各有一字,連起來(lái)就是預(yù)祝中考成功,其中預(yù)的對(duì)面是,的對(duì)面是,則它的平面展開(kāi)圖可能是(

A.B.C.D.

查看答案和解析>>

同步練習(xí)冊(cè)答案