【題目】如圖,直線y=kx(k>0)與雙曲線y=交于A、B兩點(diǎn),BC⊥x軸于C,連接AC交y軸于D,下列結(jié)論:①A、B關(guān)于原點(diǎn)對(duì)稱;②△ABC的面積為定值;③D是AC的中點(diǎn);④S△AOD=.其中正確結(jié)論的個(gè)數(shù)為( )
A.1個(gè)B.2個(gè)C.3個(gè)D.4個(gè)
【答案】C
【解析】
根據(jù)反比例函數(shù)的對(duì)稱性、函數(shù)圖象上的點(diǎn)與原點(diǎn)所連的線段、坐標(biāo)軸、向坐標(biāo)軸作垂線所圍成的直角三角形面積S的關(guān)系即S=|k|及三角形中位線的判定依次分析即可.
解:①反比例函數(shù)與正比例函數(shù)若有交點(diǎn),一定是兩個(gè),且關(guān)于原點(diǎn)對(duì)稱,②根據(jù)A、B關(guān)于原點(diǎn)對(duì)稱,S△ABC為即A點(diǎn)橫縱坐標(biāo)的乘積,為定值1,③因?yàn)?/span>AO=BO,OD∥BC,所以OD為△ABC的中位線,即D是AC中點(diǎn),所以正確;
④在△ADO中,因?yàn)?/span>AD和y軸并不垂直,所以面積不等于k的一半,即不會(huì)等于,所以錯(cuò)誤.
故選C.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】我們已經(jīng)知道一些特殊的勾股數(shù),如三連續(xù)正整數(shù)中的勾股數(shù):3、4、5;三個(gè)連續(xù)的偶數(shù)中的勾股數(shù)6、8、10;事實(shí)上,勾股數(shù)的正整數(shù)倍仍然是勾股數(shù).
(1)另外利用一些構(gòu)成勾股數(shù)的公式也可以寫出許多勾股數(shù),畢達(dá)哥拉斯學(xué)派提出的公式:a=2n+1,b=2n2+2n,c=2n2+2n+1(n為正整數(shù))是一組勾股數(shù),請(qǐng)證明滿足以上公式的a、b、c的數(shù)是一組勾股數(shù).
(2)然而,世界上第一次給出的勾股數(shù)公式,收集在我國(guó)古代的著名數(shù)學(xué)著作《九章算術(shù)》中,書中提到:當(dāng)a=(m2﹣n2),b=mn,c=(m2+n2)(m、n為正整數(shù),m>n時(shí),a、b、c構(gòu)成一組勾股數(shù);利用上述結(jié)論,解決如下問題:已知某直角三角形的邊長(zhǎng)滿足上述勾股數(shù),其中一邊長(zhǎng)為37,且n=5,求該直角三角形另兩邊的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在矩形ABCD中,AB=2,AD=,在邊CD上有一點(diǎn)E,使EB平分∠AEC.若P為BC邊上一點(diǎn),且BP=2CP,連接EP并延長(zhǎng)交AB的延長(zhǎng)線于F.給出以下五個(gè)結(jié)論:
①點(diǎn)B平分線段AF;②PF=DE;③∠BEF=∠FEC;④S矩形ABCD=4S△BPF;⑤△AEB是正三角形.
其中正確結(jié)論的序號(hào)是.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知在Rt△ABC中,∠C=90°,AD是∠BAC的角平分線,以AB上一點(diǎn)O為圓心,AD為弦作⊙O.
(1)用直尺和圓規(guī)在圖中作出⊙O(不寫作法,保留作圖痕跡),判斷直線BC與⊙O的位置關(guān)系,并說明理由;(友情提醒:必須作在答題卷上哦。
(2)若AC=3,BC=4,求⊙O的半徑長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知在Rt△ABC中,∠C=90°,AD是∠BAC的角平分線,以AB上一點(diǎn)O為圓心,AD為弦作⊙O.
(1)用直尺和圓規(guī)在圖中作出⊙O(不寫作法,保留作圖痕跡),判斷直線BC與⊙O的位置關(guān)系,并說明理由;(友情提醒:必須作在答題卷上哦。
(2)若AC=3,BC=4,求⊙O的半徑長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,河流兩岸PQ,MN互相平行,C、D是河岸PQ上間隔50m的兩個(gè)電線桿,某人在河岸MN上的A處測(cè)得∠DAB=30°,然后沿河岸走了100m到達(dá)B處,測(cè)得∠CBF=70°,求河流的寬度(結(jié)果精確到個(gè)位,=1.73,sin70°=0.94,cos70°=0.34,tan70°=2.75)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】解不等式組 請(qǐng)結(jié)合題意填空,完成本題的解答.
(Ⅰ)解不等式①,得 ;
(Ⅱ)解不等式②,得 ;
(Ⅲ)把不等式①和②的解集在數(shù)軸上表示出來.
(Ⅳ)原不等式組的解集為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC中,AB=AC,∠BAC=54°,∠BAC的平分線與AB的垂直平分線交于點(diǎn)O,將∠C沿EF(E在BC上,F在AC上)折疊,點(diǎn)C與點(diǎn)O恰好重合,則∠OEC的度數(shù)是( 。
A. 106°B. 108°C. 110°D. 112°
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com