【題目】九年級一班開展了讀一本好書的活動,班委會對學生閱讀書籍的情況進行了問卷調查,問卷設置了小說”“戲劇”“散文”“其他四個選項,每位同學僅選一項,根據(jù)調查結果繪制了如下不定整的頻數(shù)分布表和扇形統(tǒng)計圖.

 類別

 頻數(shù)(人數(shù))

 頻率

 小說

16

 

 戲劇

4

 散文

a

 

 其他

b

 合計

 1

根據(jù)圖表提供的信息,解答下列問題:

(1)直接寫出a,b,m的值;

(2)在調查問卷中,甲、乙、丙、丁四位同學選擇了戲劇類,現(xiàn)從以上四位同學中任意選出2名同學參加學校的戲劇興趣小組,請用列表法或畫樹狀圖的方法,求選取的2人恰好乙和丙的概率.

【答案】(1)a=8,b=12,m=30;(2)選取的2人恰好乙和丙的概率為

【解析】1)先根據(jù)戲劇的人數(shù)及其所占百分比可得總人數(shù),再用總人數(shù)乘以散文的百分比求得其人數(shù),根據(jù)各類別人數(shù)之和等于總人數(shù)求得其他類別的人數(shù),最后用其他人數(shù)除以總人數(shù)求得m的值;

(2)畫樹狀圖得出所有等可能的情況數(shù),找出恰好是丙與乙的情況,即可確定出所求概率.

(1)∵被調查的學生總人數(shù)為4÷10%=40人,

∴散文的人數(shù)a=40×20%=8,其他的人數(shù)b=40﹣(16+4+8)=12,

則其他人數(shù)所占百分比m%=×100%=30%,即m=30;

(2)畫樹狀圖,如圖所示:

所有等可能的情況有12種,其中恰好是丙與乙的情況有2種,

所以選取的2人恰好乙和丙的概率為

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,D是△ABC的邊BC上一點,AB4,AD2,DACB,如果△ABD的面積為15,那么△ACD的面積為(  )

A. 15 B. 10 C. D. 5

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在ABC中,以AB為直徑作⊙OBC于點D,DAC=B.

(1)求證:AC是⊙O的切線;

(2)點EAB上一點,若∠BCE=B,tanB=O的半徑是4,求EC的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知:如圖,在四邊形ABCD中,∠A=C=90°,BE平分∠ABC,DF平分∠ADC.BEDF有怎樣的位置關系?為什么?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,直線AB、CD相交于點O,OE把∠BOD分成兩部分;

(1)直接寫出圖中∠AOC的對頂角為   ,∠BOE的鄰補角為   

(2)若∠AOC=70°,且∠BOE:∠EOD=2:3,求∠AOE的度數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知:在ABC中,∠BAC90°,ABAC,直線m經過點A,BD⊥直線mCE⊥直線m,垂足分別為點DE.求證:(1)BDA≌△AEC;(2)DEBDCE.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,ABCD的對角線AC、BD交于點O,AE平分BAD交BC于點E,且∠ADC=60°,AB=BC,連接OE.下列結論:①∠CAD=30°;②SABCD=ABAC;③OB=AB;④OE=BC,成立的個數(shù)有( 。

A. 1個 B. 2個 C. 3個 D. 4個

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】甲、乙兩位同學在一次實驗中統(tǒng)計了某一結果出現(xiàn)的頻率,給出的統(tǒng)計圖如圖所示,則 符合這一結果的實驗可能是( )

A. 擲一枚正六面體的骰子,出現(xiàn)6點的概率

B. 擲一枚硬幣,出現(xiàn)正面朝上的概率

C. 任意寫出一個整數(shù),能被2整除的概率

D. 一個袋子中裝著只有顏色不同,其他都相同的兩個紅球和一個黃球,從中任意取出一個是黃球的概率

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知二次函數(shù)y=ax2+bx+c的圖象與x軸相交于A(﹣1,0),B(3,0)兩點,與y軸相交于點C(0,﹣3).

(1)求這個二次函數(shù)的表達式;

(2)若P是第四象限內這個二次函數(shù)的圖象上任意一點,PHx軸于點H,與BC交于點M,連接PC.

①求線段PM的最大值;

②當PCM是以PM為一腰的等腰三角形時,求點P的坐標.

查看答案和解析>>

同步練習冊答案