(2012•衡水一模)(1)已知:如圖1,△ABC中,分別以AB、AC為一邊向△ABC外作正方形ABGE和ACHF,直線AN⊥BC于N,若EP⊥AN于P,F(xiàn)Q⊥AN于Q.判斷線段EP、FQ的數(shù)量關(guān)系,并證明;
(2)如圖2,梯形ABCD中,AD∥BC,分別以兩腰AB、CD為一邊向梯形ABCD外作正方形ABGE和DCHF,線段AD的垂直平分線交線段AD于點M,交BC于點N,若EP⊥MN于P,F(xiàn)Q⊥MN于Q.(1)中結(jié)論還成立嗎?請說明理由.
【答案】分析:(1)由正方形的邊角關(guān)系可證△FQA≌△ANC,則FQ=AN;同樣可證△EPA≌△ANB,則EP=AN.從而得出EP=FQ;
(2)過D作PN的平行線分別交FQ、BC于點K、I,由AAS可證△FKD≌△DIC,則QK=DM,F(xiàn)Q=DM+MN,同理可得,EP=AM+MN,再由MN為AD中垂線,得出AM=MD,從而證出EP=FQ.
解答:解:(1)EP、FQ的數(shù)量關(guān)系是相等.
證明:在△FQA與△ANC中,∠F=90°-∠FAQ=∠CAN,∠FQA=∠ANC=90°,AF=AC,
∴△FQA≌△ANC,
∴FQ=AN;
同理△EPA≌△ANB,
∴EP=AN,
∴EP=FQ;

(2)答:(1)中的結(jié)論依然成立.理由如下:
過D作PN的平行線分別交FQ、BC于點K、I.
在△FKD與△DIC中,∠F=90°-∠FDK=∠CDI,∠FKD=∠DIC=90°,DF=DC,
∴△FKD≌△DIC,
∴FK=DI,
∴FQ=FK+KQ=DI+DM=DM+MN;
同理可得,EP=AM+MN,
又∵MN為AD中垂線,
∴AM=MD,
∴EP=AM+MN=DM+MN=FQ.
點評:本題綜合考查了正方形的性質(zhì),全等三角形的判定等知識,需要學(xué)會分割線段來證明線段相等.難度較大.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

(2012•衡水一模)吸煙有害健康!你知道嗎,即使被動吸煙也大大危害健康.我國從2011年1月1日起在公眾場所實行“禁煙”,為配合“禁煙”行動,某校組織同學(xué)們在某社區(qū)開展了“你支持哪種戒煙方式”的問卷調(diào)查,征求市民的意見,并將調(diào)查結(jié)果整理后制成了如下兩個統(tǒng)計圖:

根據(jù)統(tǒng)計圖解答:
(1)同學(xué)們一共隨機調(diào)查了多少人?
(2)請你把扇形統(tǒng)計圖和條形統(tǒng)計圖補充完整;
(3)如果該社區(qū)有1000人,請估計該地區(qū)大約有多少人支持“警示戒煙”這種方式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•衡水一模)如圖,圓O是△ABC的外接圓,連接OB、OC,圓O的半徑R=10,sinA=
35
,則弦BC的長為
12
12

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•衡水一模)骰子是一種特別的數(shù)字立方體(見右圖),它符合規(guī)則:相對兩面的點數(shù)之和總是7,下面四幅圖中可以折成符合規(guī)則的骰子的是( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•衡水一模)若a、b互為相反數(shù),c、d互為倒數(shù),則(cd)2012-(a+b)2011=
1
1

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•衡水一模)如圖,已知二次函數(shù)y=-
12
x2+bx+c
的圖象經(jīng)過A(2,0)、B(0,-6)兩點.
(1)求這個二次函數(shù)的解析式;
(2)設(shè)該二次函數(shù)圖象的對稱軸與x軸交于點C,連接BA、BC,求△ABC的面積;
(3)若拋物線的頂點為D,在y軸上是否存在一點P,使得△PAD的周長最。咳舸嬖,求出點P的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案