精英家教網如圖所示,P為正方形ABCD內一點,且PA:PB:PC=1:1:
3
,則∠APB的度數(shù)是( 。
A、120B、135
C、150D、175
分析:將△APB繞B點逆時針旋轉90°并連接PE,構造兩個直角三角形:Rt△PBE和Rt△PEC,利用勾股定理逆定理解答即可.
解答:精英家教網解:將△APB繞B點逆時針旋轉90°并連接PE,得△BEC,
∴△BEC≌△APB,∠APB=∠BEC,
∴△BEP為等腰直角三角形,
∴∠BEP=45°,
∵PB=1,
∴PE=
2
,
∵PC=
3
,CE=PA=1,
∴PC2=PE2+CE2,
∴∠PEC=90°,
∴∠APB=∠BEC=∠BEP+∠PEC=45°+90°=135°.
故選B.
點評:此題考查了旋轉的性質及勾股定理逆定理,將將△APB繞B點順時針旋轉90°并連接PE是解題的關鍵.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

精英家教網如圖所示,O為正方形ABCD的中心,BE平分∠DBC交DC于點E,延長BC到點F,使FC=EC,連接DF交BE的延長線于點H,連接OH交DC于點G,連接HC.則下列結論:①OH∥BF;②∠CHF=45°;③GH=
1
4
BC;④FH2=HE•HB,正確的是( 。
A、①②③B、②③④
C、①②④D、①③④

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

已知:如圖所示,E為正方形ABCD外一點,AE=AD,∠ADE=75°,則∠AEB=
30°
30°

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2010•皇姑區(qū)一模)如圖所示,ABCD為正方形.
(1)如圖1,點P為△ABC的內心,問:DP與DA有何數(shù)量關系?證明你的結論.
(2)如圖2,若點E在CB邊上(不與點C、B重合),點F在BA的延長線上,AF=CE,點P為△FBE的內心,則DP與DF有何數(shù)量關系?證明你的結論.
(3)如圖3,若點E在CB延長線上(不與點B重合),點F在BA的延長線上,AF=CE,點P是△FEB中與∠FEB、∠FBE相鄰的兩個外角平分線的交點,完成圖3,判斷DP與DF之間的數(shù)量關系(直接寫出結論,不證明).

查看答案和解析>>

科目:初中數(shù)學 來源:第24章《相似形》中考題集(07):24.3 相似三角形的性質(解析版) 題型:選擇題

如圖所示,O為正方形ABCD的中心,BE平分∠DBC交DC于點E,延長BC到點F,使FC=EC,連接DF交BE的延長線于點H,連接OH交DC于點G,連接HC.則下列結論:①OH∥BF;②∠CHF=45°;③GH=BC;④FH2=HE•HB,正確的是( )

A.①②③
B.②③④
C.①②④
D.①③④

查看答案和解析>>

同步練習冊答案