(本題滿分9分,第(1)小題4分,第(2)小題5分)

(1)解方程: ;    

 

 (2)解方程組:  .

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

(本題滿分14分,第(1)題4分,第(2)題4分,第(2)題6分)

在梯形ABCD中,AD//BC,AB⊥AD,AB=4,AD=5,CD=5.E為底邊BC上一點(diǎn),以點(diǎn)E為圓心,BE為半徑畫⊙E交直線DE于點(diǎn)F.

(1)如圖,當(dāng)點(diǎn)F在線段DE上時(shí),設(shè)BE,DF,試建立關(guān)于的函數(shù)關(guān)系式,

并寫出自變量的取值范圍;

(2)當(dāng)以CD直徑的⊙O與⊙E與相切時(shí),求的值;

(3)聯(lián)接AF、BF,當(dāng)△ABF是以AF為腰的等腰三角形時(shí),求的值。

 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(本題滿分12分,第(1)、(2)題各6分)

如圖,已知拋物線y=ax2+bx+c與x軸交于A、B兩點(diǎn),與y軸交于點(diǎn)C, D為OC的中點(diǎn),直線AD交拋物線于點(diǎn)E(2,6),且△ABE與△ABC的面積之比為3∶2.

(1)求直線AD和拋物線的解析式;

(2)拋物線的對(duì)稱軸與軸相交于點(diǎn)F,點(diǎn)Q為直線AD上一點(diǎn),且△ABQ與△ADF相似,直接寫出點(diǎn)Q點(diǎn)的坐標(biāo).

 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(11·貴港)(本題滿分11分,第(1)題5分,第(2)題6分)
(1)(11·貴港)(本題滿分5分)計(jì)算:(-1)2011-2sin60º+|-1|;

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2011屆上海市普陀區(qū)4月中考模擬數(shù)學(xué)試卷 題型:解答題

(本題滿分12分,第(1)小題4分,第(2)小題4分、第(3)小題4分)
如圖8,在平面直角坐標(biāo)系xOy中,半徑為與x軸交于、兩點(diǎn),且點(diǎn)C在x軸的上方.

(1)求圓心C的坐標(biāo);
(2)已知一個(gè)二次函數(shù)的圖像經(jīng)過點(diǎn)、B、C,求這二次函數(shù)的解析式;
(3)設(shè)點(diǎn)P在y軸上,點(diǎn)M在(2)的二次函數(shù)圖像上,如果以點(diǎn)P、M、A、B為頂點(diǎn)的四邊形是平行四邊形,請(qǐng)你直接寫出點(diǎn)M的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2010-2011學(xué)年上海市徐匯區(qū)初三年級(jí)數(shù)學(xué)學(xué)科學(xué)習(xí)能力診斷試卷 題型:解答題

(本題滿分12分,第(1)題7分,第(2)題5分)

如圖,在⊙O中,直徑AB與弦CD垂直,垂足為E,連接AC,將△ACE沿AC翻折得到△ACF,直線FC與直線AB相交于點(diǎn)G.

(1)證明:直線FC與⊙O相切;

(2)若,求證:四邊形OCBD是菱形.

 

查看答案和解析>>

同步練習(xí)冊(cè)答案