【題目】如圖,距小明家樓下D點(diǎn)20米的B處有一根廢棄的電線桿AB,經(jīng)測得此電線桿與水平線DB所成銳角為60°,在小明家樓頂C處測得電線桿頂端A的俯角為30°,底部點(diǎn)B的俯角為45°(點(diǎn)A、B、D、C在同一平面內(nèi)).已知在以點(diǎn)B為圓心,10米長為半徑的圓形區(qū)域外是一休閑廣場,有關(guān)部門想把此電線桿水平放倒,且B點(diǎn)不動(dòng),為安全起見,他們想知道這根電線桿放倒后,頂端A能否落在休閑廣場內(nèi)?請通過計(jì)算回答.
(結(jié)果精確到0.1米,參考數(shù)據(jù): ≈1.414, ≈1.732)

【答案】解:設(shè)AB=x米,
如圖,過點(diǎn)A作AE⊥水平線DB于點(diǎn)E,則:

BE=ABcos∠ABE=xcos60°= x,AE=ABsin∠ABE=xsin60°= x,
∴DE=DB+BE=20+ x.
過點(diǎn)A作AF⊥CD于點(diǎn)F,則AF=DE=20+ x,DF=AE= x.
∵C處測得電線桿頂端A的俯角為30°,∴∠CAF=30°,
∴CF=AFtan30°= (20+ x).
∵CD=DF+CF
∴20= x+ (20+ x)
解得:x=10( ﹣1)≈7.3.
∵7.3<10
故頂端A不能落在休閑廣場內(nèi).
【解析】如解答圖,作輔助線AE、AF,分別構(gòu)造直角三角形Rt△ABE和Rt△ACF,解直角三角形,列方程求出AB的長度,然后與10比較即可得出結(jié)論.
【考點(diǎn)精析】利用關(guān)于仰角俯角問題對題目進(jìn)行判斷即可得到答案,需要熟知仰角:視線在水平線上方的角;俯角:視線在水平線下方的角.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知二次函數(shù)y=a(x+2)2+3(a<0)的圖象如圖所示,則以下結(jié)論:①當(dāng)x>﹣2時(shí),y隨x的增大而增大;②不論a為任何負(fù)數(shù),該二次函數(shù)的最大值總是3;③當(dāng)a=﹣1時(shí),拋物線必過原點(diǎn);④該拋物線和x軸總有兩個(gè)公共點(diǎn).其中正確結(jié)論是( )

A.①②
B.②③
C.②④
D.①④

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】計(jì)算:
(1)計(jì)算: 9 + ( π 2010 ) 0 2 cos 45 ° .
(2)先化簡,再求值: ,其中a=1﹣

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】閱讀理解:

把兩個(gè)相同的數(shù)連接在一起就得到一個(gè)新數(shù),我們把它稱為“連接數(shù)”,例如:234234,3939…等,都是連接數(shù),其中,234234稱為六位連接數(shù),3939稱為四位連接數(shù).

(1)請寫出一個(gè)六位連接數(shù)   ,它   (填“能”或“不能”)被13整除.

(2)是否任意六位連接數(shù),都能被13整除,請說明理由.

(3)若一個(gè)四位連接數(shù)記為M,它的各位數(shù)字之和的3倍記為N,M﹣N的結(jié)果能被13整除,這樣的四位連接數(shù)有幾個(gè)?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】我市大力發(fā)展綠色交通,構(gòu)建公共綠色交通體系,“共享單車”的投入使用給人們的出行帶來便利.小明隨機(jī)調(diào)查了若干市民租用共享單車的騎車時(shí)間t(單位:分),將獲得的數(shù)據(jù)分成四組,繪制了如圖統(tǒng)計(jì)圖,請根據(jù)圖中信息,解答下列問題:

(1)這次被調(diào)查的總?cè)藬?shù)是______;

(2)補(bǔ)全條形統(tǒng)計(jì)圖;

(3)在扇形統(tǒng)計(jì)圖中,求表示A組(t≤10分)的扇形圓心角的度數(shù);

(4)如果騎共享單車的平均速度為12km/h,請估算,在租用共享單車的市民中,騎車路程不超過6km的人數(shù)所占的百分比.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某大眾汽車經(jīng)銷商在銷售某款汽車時(shí),以高出進(jìn)價(jià)20%標(biāo)價(jià).已知按標(biāo)價(jià)的九折銷售這款汽車9輛與將標(biāo)價(jià)直降0.2萬元銷售4輛獲利相同.
(1)求該款汽車的進(jìn)價(jià)和標(biāo)價(jià)分別是多少萬元?
(2)若該款汽車的進(jìn)價(jià)不變,按(1)中所求的標(biāo)價(jià)出售,該店平均每月可售出這款汽車20輛;若每輛汽車每降價(jià)0.1萬元,則每月可多售出2輛.求該款汽車降價(jià)多少萬元出售每月獲利最大?最大利潤是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知數(shù)軸上點(diǎn)A表示的數(shù)為8,B是數(shù)軸上位于點(diǎn)A左側(cè)一點(diǎn),且AB=20,

(1)寫出數(shù)軸上點(diǎn)B表示的數(shù)   

(2)|5﹣3|表示53之差的絕對值,實(shí)際上也可理解為53兩數(shù)在數(shù)軸上所對的兩點(diǎn)之間的距離.如|x﹣3|的幾何意義是數(shù)軸上表示有理數(shù)x的點(diǎn)與表示有理數(shù)3的點(diǎn)之間的距離.試探索:

①:若|x﹣8|=2,則x=   

:|x+12|+|x﹣8|的最小值為   

(3)動(dòng)點(diǎn)PO點(diǎn)出發(fā),以每秒5個(gè)單位長度的速度沿?cái)?shù)軸向右勻速運(yùn)動(dòng),設(shè)運(yùn)動(dòng)時(shí)間為t(t>0)秒.求當(dāng)t為多少秒時(shí)?A,P兩點(diǎn)之間的距離為2;

(4)動(dòng)點(diǎn)P,Q分別從O,B兩點(diǎn),同時(shí)出發(fā),點(diǎn)P以每秒5個(gè)單位長度沿?cái)?shù)軸向右勻速運(yùn)動(dòng),Q點(diǎn)以P點(diǎn)速度的兩倍,沿?cái)?shù)軸向右勻速運(yùn)動(dòng),設(shè)運(yùn)動(dòng)時(shí)間為t(t>0)秒.問當(dāng)t為多少秒時(shí)?P,Q之間的距離為4.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在梯形ABCD中,AD∥BC,E是CD的中點(diǎn),連接AE并延長交BC的延長線于點(diǎn)F,且AB⊥AE.若AB=5,AE=6,則梯形上下底之和為

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,一次函數(shù)y=kx+b的圖象與反比例函數(shù)y= 的圖象都經(jīng)過點(diǎn)A(﹣2,6)和點(diǎn)(4,n).

(1)求這兩個(gè)函數(shù)的解析式;
(2)直接寫出不等式kx+b≤ 的解集.

查看答案和解析>>

同步練習(xí)冊答案