如圖1,已知⊙O的半徑為2,點(diǎn)A的坐標(biāo)為(-4,0),點(diǎn)B為⊙O上的動(dòng)點(diǎn),以AB為邊向外做正方形ABCD.
(1)當(dāng)點(diǎn)B在y軸的正半軸上時(shí),如圖2,求點(diǎn)C的坐標(biāo).
(2)當(dāng)直線AB與⊙O相切時(shí),求直線AB的解析式.
(3)設(shè)動(dòng)點(diǎn)B的橫坐標(biāo)為m,正方形ABCD的面積為S,求出S與m的函數(shù)關(guān)系式,并判斷正方形ABCD的面積是否存在最大值或最小值?如果存在,求出m的值,如果不存在,試說明理由.
分析:(1)如圖2,過點(diǎn)C作CE⊥y軸于點(diǎn)E,構(gòu)建全等三角形(△ABO≌△BCE),根據(jù)全等三角形的對(duì)應(yīng)邊相等證得OB=EC=2,OA=EB=4,則OE=OB+EB=6,所以C(-2,6);
(2)如圖3,連接OB,過點(diǎn)B作BD⊥OA于點(diǎn)D.利用切線的性質(zhì)證得∠ABO=90°.通過解直角△ABO和直角△ABD可以求得點(diǎn)B的坐標(biāo)是B(-1,
3
).然后把點(diǎn)A、B的坐標(biāo)分別代入直線AB的方程
y=kx+b(k≠0),列出關(guān)于k、b數(shù)的方程組,通過解方程組即可求得它們的值;
(3)理由勾股定理求得AB2=AD2+BD2=(4+m)2+4-m2=8m+20.即S=8m+20.所以結(jié)合圖形可知-2≤m≤2,則4≤S≤36.即當(dāng)m=2時(shí),S最大值=36;當(dāng)m=-2時(shí),S最小值=4.
解答:解:(1)如圖2,∵⊙O的半徑為2,點(diǎn)A的坐標(biāo)為(-4,0),四邊形ABCD是正方形,
∴OA=4,OB=2,AB=BC,∠ABC=90°.
過點(diǎn)C作CE⊥y軸于點(diǎn)E,則∠1=∠2(同腳的余角相等).
∵在△ABO與△BCE中,
∠AOB=∠BEC
∠1=∠2
AB=BC
,
∴△ABO≌△BCE(ASA),
∴OB=EC=2,OA=EB=4,
∴OE=OB+EB=2+4=6,
∴C(-2,6);

(2)如圖3,連接OB,過點(diǎn)B作BD⊥OA于點(diǎn)D.
∵AB是⊙O的切線,
∴∠ABO=90°.
∵OB=2,OA=4,
∴OB=
1
2
OA,
∴∠BAO=30°,
∴AB=2
3
,
∴BD=
3
,AD=3,則OD=OA-AD=1,
∴B(-1,
3
).
設(shè)直線AB的解析式為:y=kx+b(k≠0).把A(-4,0),B(-1,
3
)代入,得
-4k+b=0
-k+b=
3
,
解得,
k=
3
3
b=
4
3
3
,
∴直線AB的解析式為:y=
3
3
x+
4
3
3

∵直線AB′與直線AB關(guān)于x軸對(duì)稱,
∴直線AB′的解析式為:y=-
3
3
x-
4
3
3

綜上所述,滿足條件的直線AB的方程為y=
3
3
x+
4
3
3
或y=-
3
3
x-
4
3
3
;

(3)正方形ABCD的面積存在最大值或最小值.理由如下:
如圖3,在直角△OBD中,OB=2,OD=|m|,則根據(jù)勾股定理求得BD2=OB2-OD2=4-m2
在直角△ABD中,根據(jù)勾股定理,得到AB2=AD2+BD2=(4+m)2+4-m2=8m+20.即S=8m+20.
∵-2≤m≤2,
∴4≤S≤36.即當(dāng)m=2時(shí),S最大值=36;當(dāng)m=-2時(shí),S最小值=4.
綜上所述,S與m的函數(shù)關(guān)系式是S=8m+20,當(dāng)m=2時(shí),S最大值=36;當(dāng)m=-2時(shí),S最小值=4.
點(diǎn)評(píng):本題綜合考查了圓的切線的性質(zhì),待定系數(shù)法求一次函數(shù)解析式,正方形面積的求法等知識(shí)點(diǎn).解題時(shí),充分體現(xiàn)了“數(shù)學(xué)結(jié)合”數(shù)學(xué)思想的優(yōu)勢,使抽象的問題變得形象化,降低了題的難度與梯度.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

3、司機(jī)在駕駛汽車時(shí),發(fā)現(xiàn)緊急情況到踩下剎車需要一段時(shí)間,這段時(shí)間叫反應(yīng)時(shí)間.之后還會(huì)繼續(xù)行駛一段距離.我們把司機(jī)從發(fā)現(xiàn)緊急情況到汽車停止所行駛的這段距離叫“剎車距離”(如圖).
已知汽車的剎車距離s(單位:m)與車速v(單位:m/s)之同有如下關(guān)系:s=tv+kv2其中t為司機(jī)的反應(yīng)時(shí)間(單位:s),k為制動(dòng)系數(shù).某機(jī)構(gòu)為測試司機(jī)飲酒后剎車距離的變化,對(duì)某種型號(hào)的汽車進(jìn)行了“醉漢”駕車測試,已知該型號(hào)汽車的制動(dòng)系數(shù)k=0.08,并測得志愿者在未飲酒時(shí)的反應(yīng)時(shí)間t=0.7s
(1)若志愿者未飲酒,且車速為11m/s,則該汽車的剎車距離為多少m(精確到0.1m);
(2)當(dāng)志愿者在喝下一瓶啤酒半小時(shí)后,以17m/s的速度駕車行駛,測得剎車距離為46m.假如該志愿者當(dāng)初是以11m/s的車速行駛,則剎車距離將比未飲酒時(shí)增加多少?(精確到0.1m)
(3)假如你以后駕駛該型號(hào)的汽車以11m/s至17m/s的速度行駛,且與前方車輛的車距保持在40m至50m之間.若發(fā)現(xiàn)前方車輛突然停止,為防止“追尾”.則你的反應(yīng)時(shí)間應(yīng)不超過多少秒?(精確到0.01s)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

司機(jī)在駕駛汽車時(shí),發(fā)現(xiàn)緊急情況到踩下剎車需要一段時(shí)間,這段時(shí)間叫反應(yīng)時(shí)間.之后還會(huì)繼續(xù)行駛一段距離.我們把司機(jī)從發(fā)現(xiàn)緊急情況到汽車停止所行駛的這段距離叫“剎車距離”(如圖).

已知汽車的剎車距離s(單位:米)與車速v(單位:米/秒)之間有如下關(guān)系:s=tv+kv2,其中t為司機(jī)的反應(yīng)時(shí)間(單位:秒),k為制動(dòng)系數(shù).某機(jī)構(gòu)為測試司機(jī)飲酒后剎車距離的變化,對(duì)某種型號(hào)的汽車進(jìn)行了“醉漢”駕車測試,已知該型號(hào)汽車的制動(dòng)系數(shù)k=0.1,并測得志愿者在未飲酒時(shí)的反應(yīng)時(shí)間t=0.5秒.
(1)若志愿者未飲酒,且車速為15米/秒,則該汽車的剎車距離為
30
30
米.
(2)當(dāng)志愿者在喝下一瓶啤酒半小時(shí)后,以15米/秒的速度駕車行駛,測得剎車距離為52.5米,此時(shí)該志愿者的反應(yīng)時(shí)間是
2
2
秒.
(3)假如該志愿者喝酒后以10米/秒的車速行駛,反應(yīng)時(shí)間即第(2)題求出來的量,則剎車距離將比未飲酒時(shí)增加多少?
(4)假如你以后駕駛該型號(hào)的汽車以15 米/秒的速度行駛,且與前方車輛的車距保持在42米至50 米之間.若發(fā)現(xiàn)前方車輛突然停止,為防止“追尾”.則你的反應(yīng)時(shí)間應(yīng)少于多少秒?
(5)通過本題的數(shù)據(jù),談?wù)勀銓?duì)“酒駕”的認(rèn)識(shí).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

司機(jī)在駕駛汽車時(shí),發(fā)現(xiàn)緊急情況到踩下剎車需要一段時(shí)間,這段時(shí)間叫反應(yīng)時(shí)間.之后還會(huì)繼續(xù)行駛一段距離.我們把司機(jī)從發(fā)現(xiàn)緊急情況到汽車停止所行駛的這段距離叫“剎車距離”(如圖).
已知汽車的剎車距離s(單位:米)與車速v(單位:米/秒)之間有如下關(guān)系:s=tv+kv2其中t為司機(jī)的反應(yīng)時(shí)間(單位:秒),k為制動(dòng)系數(shù).某機(jī)構(gòu)為測試司機(jī)飲酒后剎車距離的變化,對(duì)某種型號(hào)的汽車進(jìn)行了“醉漢”駕車測試,已知該型號(hào)汽車的制動(dòng)系數(shù)k=0.1,并測得志愿者在未飲酒時(shí)的反應(yīng)時(shí)間t=0.5秒
(1)若志愿者未飲酒,且車速為10米/秒,則該汽車的剎車距離為
米;
(2)當(dāng)志愿者在喝下一瓶啤酒半小時(shí)后,以15米/秒的速度駕車行駛,測得剎車距離為52.5米,此時(shí)該志愿者的反應(yīng)時(shí)間是
秒.
(3)假如該志愿者當(dāng)初是以10米/秒的車速行駛,則剎車距離將比未飲酒時(shí)增加多少?
(4)假如你以后駕駛該型號(hào)的汽車以10米/秒至15 米/秒的速度行駛,且與前方車輛的車距保持在42米至50 米之間.若發(fā)現(xiàn)前方車輛突然停止,為防止“追尾”.則你的反應(yīng)時(shí)間應(yīng)不超過多少秒?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

如圖1,已知⊙O的半徑為2,點(diǎn)A的坐標(biāo)為(-4,0),點(diǎn)B為⊙O上的動(dòng)點(diǎn),以AB為邊向外做正方形ABCD.
(1)當(dāng)點(diǎn)B在y軸的正半軸上時(shí),如圖2,求點(diǎn)C的坐標(biāo).
(2)當(dāng)直線AB與⊙O相切時(shí),求直線AB的解析式.
(3)設(shè)動(dòng)點(diǎn)B的橫坐標(biāo)為m,正方形ABCD的面積為S,求出S與m的函數(shù)關(guān)系式,并判斷正方形ABCD的面積是否存在最大值或最小值?如果存在,求出m的值,如果不存在,試說明理由.
作業(yè)寶

查看答案和解析>>

同步練習(xí)冊(cè)答案