【題目】一個不透明的口袋中裝有4個分別標有數(shù)字﹣1,﹣2,3,4的小球,它們的形狀、大小完全相同.小紅先從口袋中隨機摸出一個小球記下數(shù)字為x;小穎在剩下的3個小球中隨機摸出一個小球記下數(shù)字為y.
(1)小紅摸出標有數(shù)字3的小球的概率是___;
(2)請用列表法或畫樹狀圖的方法表示出由x,y確定的點P(x,y)所有可能的結果;
(3)若規(guī)定:點P(x,y)在第一象限或第三象限小紅獲勝;點P(x,y)在第二象限或第四象限則小穎獲勝.請分別求出兩人獲勝的概率.
【答案】
(1)
解:小紅摸出標有數(shù)字3的小球的概率是;
故答案為;
(2)
解:列表如下:
﹣1 | ﹣2 | 3 | 4 | |
﹣1 | (﹣1,﹣2) | (﹣1,3) | (﹣1,4) | |
﹣2 | (﹣2,﹣1) | (﹣2,3) | (﹣2,4) | |
3 | (3,﹣1) | (3,﹣2) | (3,4) | |
4 | (4,﹣1) | (4,﹣2) | (4,3) |
(3)
解:從上面的表格可以看出,所有可能出現(xiàn)的結果共有12種,且每種結果出現(xiàn)的可能性相同,其中點(x,y)在第一象限或第三象限的結果有4種,第二象限或第四象限的結果有8種,
所以小紅獲勝的概率=,小穎獲勝的概率=.
【解析】(1)直接根據(jù)概率公式求解;
(2)通過列表展示所有12種等可能性的結果數(shù);
(3)找出在第一象限或第三象限的結果數(shù)和第二象限或第四象限的結果數(shù),然后根據(jù)概率公式計算兩人獲勝的概率.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,點A是雙曲線在第二象限分支上的一個動點,連接AO并延長交另一分支于點B,以AB為底作等腰△ABC,且∠ACB=120°,點C在第一象限,隨著點A的運動,點C的位置也不斷變化,但點C始終在雙曲線上運動,則k的值為( 。
A.1
B.2
C.3
D.4
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某中學要進行理、化實驗加試,需用九年級兩個班級的學生整理實驗器材.已知一班單獨整理需要30分鐘完成.
(1)如果一班與二班共同整理15分鐘后,一班另有任務需要離開,剩余工作由二班單獨整理15分鐘才完成任務,求二班單獨整理這批實驗器材需要多少分鐘?
(2)如果一、二的工作效率不變,先由二班單獨整理,時間不超過20分鐘,剩余工作再由一班獨立完成,那么整理完這批器材一班至少還需要多少分鐘?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,將△ABC在網(wǎng)格中(網(wǎng)格中每個小正方形的邊長均為1)依次進行位似變換、軸對稱變換和平移變換后得到△A3B3C3 .
(1)△ABC與△A1B1C1的位似比等于 ;
(2)在網(wǎng)格中畫出△A1B1C1關于y軸的軸對稱圖形△A2B2C2;
(3)請寫出△A3B3C3是由△A2B2C2怎樣平移得到的?
(4)設點P(x,y)為△ABC內(nèi)一點,依次經(jīng)過上述三次變換后,點P的對應點的坐標為 .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】過矩形ABCD的對角線AC的中點O作EF⊥AC,交BC邊于點E,交AD邊于點F,分別連接AE、CF.若AB=,∠DCF=30°,則EF的長為( 。
A.2
B.3
C.
D.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知二次函數(shù)y=ax2+x+c的圖象與y軸交于點A(0,4),與x軸交于點B、C,點C坐標為(8,0),連接AB、AC.
(1)請直接寫出二次函數(shù)y=ax2+x+c的表達式;
(2)判斷△ABC的形狀,并說明理由;
(3)若點N在x軸上運動,當以點A、N、C為頂點的三角形是等腰三角形時,請直接寫出此時點N的坐標;
(4)若點N在線段BC上運動(不與點B、C重合),過點N作NM∥AC,交AB于點M,當△AMN面積最大時,求此時點N的坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在△ABC中,點D,E,F(xiàn)分別在AB,BC,AC上,且∠ADF+∠DEC=180°,∠AFE=∠BDE.
(1)如圖1,當DE=DF時,圖1中是否存在與AB相等的線段?若存在,請找出,并加以證明;若不存在,說明理由;
(2)如圖2,當DE=kDF(其中0<k<1)時,若∠A=90°,AF=m,求BD的長(用含k,m的式子表示).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某工廠的污水處理程序如下:原始污水必先經(jīng)過A系統(tǒng)處理,處理后的污水(A級水)達到環(huán)保標準(簡稱達標)的概率為p(0<p<1).經(jīng)化驗檢測,若確認達標便可直接排放;若不達標則必須進行B系統(tǒng)處理后直接排放. 某廠現(xiàn)有4個標準水量的A級水池,分別取樣、檢測.多個污水樣本檢測時,既可以逐個化驗,也可以將若干個樣本混合在一起化驗.混合樣本中只要有樣本不達標,則混合樣本的化驗結果必不達標.若混合樣本不達標,則該組中各個樣本必須再逐個化驗;若混合樣本達標,則原水池的污水直接排放.
現(xiàn)有以下四種方案,
方案一:逐個化驗;
方案二:平均分成兩組化驗;
方案三:三個樣本混在一起化驗,剩下的一個單獨化驗;
方案四:混在一起化驗.
化驗次數(shù)的期望值越小,則方案的越“優(yōu)”.
(Ⅰ) 若 ,求2個A級水樣本混合化驗結果不達標的概率;
(Ⅱ) 若 ,現(xiàn)有4個A級水樣本需要化驗,請問:方案一,二,四中哪個最“優(yōu)”?
(Ⅲ) 若“方案三”比“方案四”更“優(yōu)”,求p的取值范圍.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知:如圖,在四邊形ABCD中,AB∥CD,對角線AC、BD交于點E,點F在邊AB上,連接CF交線段BE于點G,CG2=GEGD.
(1)求證:∠ACF=∠ABD;
(2)連接EF,求證:EFCG=EGCB.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com