【題目】為鼓勵創(chuàng)業(yè),市政府制定了小型企業(yè)的優(yōu)惠政策,許多小型企業(yè)應(yīng)運(yùn)而生.某鎮(zhèn)統(tǒng)計(jì)了該鎮(zhèn)今年1-5月新注冊小型企業(yè)的數(shù)量,并將結(jié)果繪制成如下兩種不完整的統(tǒng)計(jì)圖:
(1)某鎮(zhèn)今年1-5月新注冊小型企業(yè)一共有 家.請將折線統(tǒng)計(jì)圖補(bǔ)充完整.
(2)該鎮(zhèn)今年3月新注冊的小型企業(yè)中,只有2家是餐飲企業(yè).現(xiàn)從3月新注冊的小型企業(yè)中隨機(jī)抽取2家企業(yè)了解其經(jīng)營狀況,請用列表或畫樹狀圖的方法求出所抽取的2家企業(yè)恰好都是餐飲企業(yè)的概率.
【答案】(1)16,將折線統(tǒng)計(jì)圖補(bǔ)充完整見解析;(2).
【解析】
試題(1)根據(jù)3月份有4家,占25%,可求出某鎮(zhèn)今年1﹣5月新注冊小型企業(yè)一共有的家數(shù),再求出1月份的家數(shù),進(jìn)而將折線統(tǒng)計(jì)圖補(bǔ)充完整;
(2)設(shè)該鎮(zhèn)今年3月新注冊的小型企業(yè)為甲、乙、丙、丁,其中甲、乙為餐飲企業(yè),根據(jù)題意畫出樹狀圖,然后由樹狀圖求得所有等可能的結(jié)果與甲、乙2家企業(yè)恰好被抽到的情況,再利用概率公式求解即可求得答案.
試題解析:解:(1)根據(jù)統(tǒng)計(jì)圖可知,3月份有4家,占25%,
所以某鎮(zhèn)今年1﹣5月新注冊小型企業(yè)一共有:4÷25%=16(家),
1月份有:16﹣2﹣4﹣3﹣2=5(家).
折線統(tǒng)計(jì)圖補(bǔ)充如下:
故答案為16;
(2)設(shè)該鎮(zhèn)今年3月新注冊的小型企業(yè)為甲、乙、丙、丁,其中甲、乙為餐飲企業(yè).畫樹狀圖得:
∵共有12種等可能的結(jié)果,甲、乙2家企業(yè)恰好被抽到的有2種,
∴所抽取的2家企業(yè)恰好都是餐飲企業(yè)的概率為=.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】經(jīng)過舉國上下抗擊新型冠狀病毒的斗爭,疫情得到了有效控制,國內(nèi)各大企業(yè)在2月9日后紛紛進(jìn)入復(fù)工狀態(tài).為了了解全國企業(yè)整體的復(fù)工情況,我們查找了截止到2020年3月1日全國部分省份的復(fù)工率,并對數(shù)據(jù)進(jìn)行整理、描述和分析.下面給出了一些信息:
a.截止3月1日20時,全國已有11個省份工業(yè)企業(yè)復(fù)工率在90%以上,主要位于東南沿海地區(qū),位居前三的分別是貴州(100%)、浙江(99.8%)、江蘇(99%).
b.各省份復(fù)工率數(shù)據(jù)的頻數(shù)分布直方圖如圖1(數(shù)據(jù)分成6組,分別是40<x≤50;
50<x≤60;60<x≤70;70<x≤80;80<x≤90;90<x≤100):
c.如圖2,在b的基礎(chǔ)上,畫出扇形統(tǒng)計(jì)圖:
d.截止到2020年3月1日各省份的復(fù)工率在80<x≤90這一組的數(shù)據(jù)是:
81.3 | 83.9 | 84 | 87.6 | 89.4 | 90 | 90 |
e.截止到2020年3月1日各省份的復(fù)工率的平均數(shù)、中位數(shù)、眾數(shù)如下:
日期 | 平均數(shù) | 中位數(shù) | 眾數(shù) |
截止到2020年3月1日 | 80.79 | m | 50,90 |
請解答以下問題:
(1)依據(jù)題意,補(bǔ)全頻數(shù)分布直方圖;
(2)扇形統(tǒng)計(jì)圖中50<x≤60這組的圓心角度數(shù)是 度(精確到0.1).
(3)中位數(shù)m的值是 .
(4)根據(jù)以上統(tǒng)計(jì)圖表簡述國內(nèi)企業(yè)截止3月1日的復(fù)工率分布特征.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線y=-2x+4與坐標(biāo)軸分別交于C、B兩點(diǎn),過點(diǎn)C作CD⊥x軸,點(diǎn)P是x軸下方直線CD上的一點(diǎn),且△OCP與△OBC相似,求過點(diǎn)P的雙曲線解析式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,一次函數(shù)y1=ax+b(a≠0)的圖象與反比例函數(shù)y2=(k≠0)的圖象交于A、B兩點(diǎn),與x軸交于點(diǎn)C,過點(diǎn)A作AH⊥x軸于點(diǎn)H,點(diǎn)O是線段CH的中點(diǎn),AC=4,cos∠ACH=.
(1)求該反比例函數(shù)和一次函數(shù)的解析式;
(2)在x軸上是否存在點(diǎn)P,使三角形PAC是等腰三角形?若存在,請求出P點(diǎn)坐標(biāo);不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為響應(yīng)市政府關(guān)于“垃圾不落地市區(qū)更美麗”的主題宣傳活動,某校隨機(jī)調(diào)查了部分學(xué)生對垃圾分類知識的掌握情況.調(diào)查選項(xiàng)分為“A:非常了解,B:比較了解,C:了解較少,D:不了解”四種,并將調(diào)查結(jié)果繪制成兩幅不完整的統(tǒng)計(jì)圖.請根據(jù)圖中提供的信息,解答下列問題:
(1)把兩幅統(tǒng)計(jì)圖補(bǔ)充完整;
(2)若該校學(xué)生有2000名,根據(jù)調(diào)查結(jié)果,估計(jì)該!胺浅A私狻迸c“比較了解”的學(xué)生共有 名;
(3)已知“非常了解”的同學(xué)有3名男生和1名女生,從中隨機(jī)抽取2名進(jìn)行垃圾分類的知識交流,請用畫樹狀圖或列表的方法,求恰好抽到一男一女的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知一元二次方程2x2﹣3x﹣6=0有兩個實(shí)數(shù)根a,b,直線經(jīng)過點(diǎn)A(a+b,0)和點(diǎn)B(0,ab),則直線l的函數(shù)表達(dá)式為( )
A.y=2x﹣3B.y=2x+3C.y=﹣2x+3D.y=﹣2x﹣3
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1是某品牌訂書機(jī),其截面示意圖如圖2所示.訂書釘放置在軌槽CD內(nèi)的MD處,由連接彈簧的推動器MN推緊,連桿EP一端固定在壓柄CF上的點(diǎn)E處,另一端P在DM上移動.當(dāng)點(diǎn)P與點(diǎn)M重合后,拉動壓柄CF會帶動推動器MN向點(diǎn)C移動.使用時,壓柄CF的端點(diǎn)F與出釘口D重合,紙張放置在底座AB的合適位置下壓完成裝訂(即點(diǎn)D與點(diǎn)H重合).已知CA⊥AB,CA=2cm,AH=12cm,CE=5cm,EP=6cm,MN=2cm.
(1)求軌槽CD的長(結(jié)果精確到0.1);
(2)裝入訂書釘需打開壓柄FC,拉動推動器MN向點(diǎn)C移動,當(dāng)∠FCD=53°時,能否在ND處裝入一段長為2.5cm的訂書釘?(參考數(shù)據(jù):≈2.24,≈6.08,sin53°≈0.80,cos53°≈0.60)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,AB=AC,AO⊥BC于點(diǎn)O,OE⊥AB于點(diǎn)E,以點(diǎn)O為圓心,OE為半徑作半圓,交AO于點(diǎn)F.
(1)求證:AC是⊙O的切線;
(2)若點(diǎn)F是OA的中點(diǎn),OE=3,求圖中陰影部分的面積;
(3)在(2)的條件下,點(diǎn)P是BC邊上的動點(diǎn),當(dāng)PE+PF取最小值時,直接寫出BP的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】2012年6月5日是“世界環(huán)境日”,南寧市某校舉行了“綠色家園”演講比賽,賽后整理參賽同學(xué)的成績,制作成直方圖(如圖).
(1)分?jǐn)?shù)段在______范圍的人數(shù)最多;
(2)全校共有________人參加比賽;
(3)學(xué)校決定選派本次比賽成績最好的3人參加南寧市中學(xué)生環(huán)保演講決賽,并為參賽選手準(zhǔn)備了紅、藍(lán)、白顏色的上衣各1件和2條白色、1條藍(lán)色的褲子.請用“列表法”或“樹形圖法”表示上衣和褲子搭配的所有可能出現(xiàn)的結(jié)果,并求出上衣和能搭配成同一種顏色的概率.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com