(2006•常德)如圖,若AB∥CD,EF與AB、CD分別相交于點E、F,EP⊥EF,∠EFD的平分線與EP相交于點P,且∠BEP=40°,則∠EPF=    度.
【答案】分析:由題可直接求得∠BEF,然后根據(jù)兩直線平行,同旁內(nèi)角互補可知∠DFE,根據(jù)角平分線的性質(zhì)可求得∠EFP,最后根據(jù)三角形內(nèi)角和求出∠EPF.
解答:解:∵EP⊥EF,
∴∠PEF=90°,
∵∠BEP=40°,
∴∠BEF=∠PEF+∠BEP=130°,
∵AB∥CD,
∴∠EFD=180°-∠BEF=50°,
∵FP平分∠EFD,
∴∠EFP=0.5×∠EFD=25°,
∴∠P=180°-∠PEF-∠EFP=65°.
點評:本題用到的知識點為:三角形的內(nèi)角和是180°,以及平行線的性質(zhì):兩直線平行,同旁內(nèi)角互補.
練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源:2006年全國中考數(shù)學試題匯編《二次函數(shù)》(10)(解析版) 題型:解答題

(2006•常德)如圖,在直角坐標系中,已知點A(,0),B(-,0),以點A為圓心,AB為半徑的圓與x軸相交于點B,C,與y軸相交于點D,E.
(1)若拋物線y=x2+bx+c經(jīng)過C,D兩點,求拋物線的解析式,并判斷點B是否在該拋物線上;
(2)在(1)中的拋物線的對稱軸上求一點P,使得△PBD的周長最;
(3)設(shè)Q為(1)中的拋物線的對稱軸上的一點,在拋物線上是否存在這樣的點M,使得四邊形BCQM是平行四邊形?若存在,求出點M的坐標;若不存在,說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源:2009年浙江省杭州市高中招生學習能力數(shù)學模擬試卷(解析版) 題型:解答題

(2006•常德)如圖,在直角坐標系中,已知點A(,0),B(-,0),以點A為圓心,AB為半徑的圓與x軸相交于點B,C,與y軸相交于點D,E.
(1)若拋物線y=x2+bx+c經(jīng)過C,D兩點,求拋物線的解析式,并判斷點B是否在該拋物線上;
(2)在(1)中的拋物線的對稱軸上求一點P,使得△PBD的周長最;
(3)設(shè)Q為(1)中的拋物線的對稱軸上的一點,在拋物線上是否存在這樣的點M,使得四邊形BCQM是平行四邊形?若存在,求出點M的坐標;若不存在,說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源:2006年湖南省常德市中考數(shù)學試卷(解析版) 題型:解答題

(2006•常德)如圖,在直角坐標系中,已知點A(,0),B(-,0),以點A為圓心,AB為半徑的圓與x軸相交于點B,C,與y軸相交于點D,E.
(1)若拋物線y=x2+bx+c經(jīng)過C,D兩點,求拋物線的解析式,并判斷點B是否在該拋物線上;
(2)在(1)中的拋物線的對稱軸上求一點P,使得△PBD的周長最;
(3)設(shè)Q為(1)中的拋物線的對稱軸上的一點,在拋物線上是否存在這樣的點M,使得四邊形BCQM是平行四邊形?若存在,求出點M的坐標;若不存在,說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源:2011年山東省濰坊市中考數(shù)學模擬試卷(一)(解析版) 題型:選擇題

(2006•常德)如圖,在直角坐標系中,⊙O的半徑為1,則直線y=-x+與⊙O的位置關(guān)系是( )

A.相離
B.相交
C.相切
D.以下三種情形都有可能

查看答案和解析>>

科目:初中數(shù)學 來源:2006年全國中考數(shù)學試題匯編《代數(shù)式》(05)(解析版) 題型:填空題

(2006•常德)如圖是一個有規(guī)律排列的數(shù)表,請用含n的代數(shù)式(n為正整數(shù))表示數(shù)表中第n行第n列的數(shù):   

查看答案和解析>>

同步練習冊答案