【題目】將直角邊長為6的等腰Rt△AOC放在如圖所示的平面直角坐標(biāo)系中,點O為坐標(biāo)原點,點C、A分別在x、y軸的正半軸上,一條拋物線經(jīng)過點A、C及點B–3,0

1求該拋物線的解析式;

2若點P是線段BC上一動點,過點P作AB的平行線交AC于點E,連接AP,當(dāng)△APE的面積最大時,求點P的坐標(biāo);

3在第一象限內(nèi)的該拋物線上是否存在點G,使△AGC的面積與(2)中△APE的最大面積相等?若存在,請求出點G的坐標(biāo);若不存在,請說明理由.

【答案】(1)y=-x2+x+6.(2)點P的坐標(biāo)為(,0).(3)點G的坐標(biāo)為()或(,).

【解析】

試題分析:(1)已知OA、OC的長,可得A、C的坐標(biāo),即可用待定系數(shù)法求出拋物線的解析式.

(2)設(shè)出點P的橫坐標(biāo),表示出CP的長,由于PEAB,可利用相似三角形CPE∽△CBA,求出APE的面積表達(dá)式,進(jìn)而可將面積問題轉(zhuǎn)換為二次函數(shù)的最值問題,根據(jù)函數(shù)的性質(zhì)即可得到APE的最大面積及對應(yīng)的P點坐標(biāo).

(3)由于AGC的面積無法直接求出,可用割補法求解,過G作GHx軸于H,設(shè)出G點坐標(biāo),表示出HGC、梯形AOHG的面積,它們的面積和減去AOC的面積即可得到AGC的面積表達(dá)式,然后將(2)題所得APE的面積最大值代入上式中,聯(lián)立拋物線的解析式即可得到點G的坐標(biāo).

試題解析:(1)如圖,

拋物線y=ax2+bx+c(a0)的圖象經(jīng)過點A(0,6),

c=6.

拋物線的圖象又經(jīng)過點(-3,0)和(6,0),

,

解之得,

故此拋物線的解析式為:y=-x2+x+6.

(2)設(shè)點P的坐標(biāo)為(m,0),

則PC=6-m,SABC=BCAO=×9×6=27;

PEAB,

∴△CEP∽△CAB;

,

,

SCEP=(6-m)2

SAPC=PCAO=(6-m)×6=3(6-m),

SAPE=SAPC-SCEP=3(6-m)-(6-m)2=-(m-2+;

當(dāng)m=時,SAPE有最大面積為;

此時,點P的坐標(biāo)為(,0).

(3)如圖,過G作GHBC于點H,設(shè)點G的坐標(biāo)為G(a,b),

連接AG、GC,

S梯形AOHG=a(b+6),

SCHG=(6-a)b,

S四邊形AOCG=a(b+6)+(6-a)b=3(a+b).

SAGC=S四邊形AOCG-SAOC,

=3(a+b)-18,

點G(a,b)在拋物線y=-x2+x+6的圖象上,

b=-a2+a+6,

=3(a-a2+a+6)-18,

化簡,得4a2-24a+27=0,

解之得a1=,a2=;

故點G的坐標(biāo)為(,)或(,).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在一次“中華好詩詞”比賽中,某參賽小組的得分如下:95,85,95,85,80,95,90.這組數(shù)據(jù)的眾數(shù)和中位數(shù)分別是(
A.95,90
B.95,85
C.90,95
D.80,85

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某校7個班同學(xué)積極捐出自己的零花錢獻(xiàn)愛心,各班捐款的數(shù)額分別是(單位:元):500,200,500,300,500,250,1350.這組數(shù)據(jù)的眾數(shù)和中位數(shù)分別是( )

A. 500,200 B. 500,500 C. 500,300 D. 1350,500

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,△ABC和△CDE均為等腰直角三角形,點B,C,D在一條直線上,點M是AE的中點,下列結(jié)論:①tan∠AEC=;②S△ABC+S△CDE≧S△ACE;③BM⊥DM;④BM=DM,正確結(jié)論的個數(shù)是

A、1個 B、2個 C、3個 D、4個

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】對頂角相等的逆命題是命題(填寫“真”或“假”).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列命題中,假命題的是(
A.同旁內(nèi)角相等,兩直線平行
B.等腰三角形的兩個底角相等
C.同角(等角)的補角相等
D.三角形的一個外角大于任何一個與它不相鄰的內(nèi)角

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某特警隊為了選拔“神槍手”,甲、乙、丙、丁四人進(jìn)人射擊比賽,每人10次射擊成績的平均數(shù)都是9.8環(huán),方差分別為S2=0.63,S2=0.51,S2=0.42,S2=0.45,則四人中成績最穩(wěn)定的是(
A.甲
B.乙
C.丙
D.丁

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】“H7N9”是一種新型禽流感,其病毒顆粒呈多形性,其匯總球形病毒的最大直徑為0.00000012米,這一直徑用科學(xué)記數(shù)法表示為(
A.1.2×109
B.1.2×108
C.1.2×107
D.12×109

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】若一個多邊形的內(nèi)角和等于720°,則這個多邊形的邊數(shù)是( )
A.5
B.6
C.7
D.8

查看答案和解析>>

同步練習(xí)冊答案