【題目】如圖所示,在RtABC中,a,b分別是∠A,∠B的對邊,c為斜邊,如果已知兩個(gè)元素a,∠B,就可以求出其余三個(gè)未知元素b,c,∠A

1)求解的方法有多種,請你按照下列步驟,完成一種求解過程.

第一步:已知:a,B,用關(guān)系式:_______________,求出:________________;

第二步:已知:_____,用關(guān)系式:_______________,求出:_________________;

第三步:已知:_____,用關(guān)系式:_______________,求出:_________________.

2)請你分別給出a,∠B的一個(gè)具體數(shù)據(jù),然后按照(1)中的思路,求出b,c,∠A的值.

【答案】(1) ∠A ;atanB ;;(2)答案不唯一,具體見解析.

【解析】

試題

(1)利用直角三角形中兩銳角互余和銳角三角函數(shù)的定義可得答案;

(2)a和∠B的值不是唯一的,這里可取a=2,∠B=60°,然后按照(1)中的步驟可解得要求的值.

試題解析

(1)A atanB ;;

(2)答案不唯一,如:令a=2,∠B=60°,

∠A=90°-60°=30°,

batanB=2,c4.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某校為了解九年級名學(xué)生的體育綜合素質(zhì),隨機(jī)抽查了名學(xué)生進(jìn)行體育綜合測試,所得成績整理分成五組,并制成如下頻數(shù)分布表和扇形統(tǒng)計(jì)圖。

頻數(shù)分布表:

組別

成績(分)

頻數(shù)

請你根據(jù)以上圖表提供的信息,解答下列問題:

(1)頻數(shù)分布表中的 ;

(2)扇形統(tǒng)計(jì)圖中,組所對應(yīng)的扇形圓心角的度數(shù)是_ .

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】煙臺(tái)享有“蘋果之鄉(xiāng)”的美譽(yù).甲、乙兩超市分別用3000元以相同的進(jìn)價(jià)購進(jìn)質(zhì)量相同的蘋果.甲超市銷售方案是:將蘋果按大小分類包裝銷售,其中大蘋果400千克,以進(jìn)價(jià)的2倍價(jià)格銷售,剩下的小蘋果以高于進(jìn)價(jià)10%銷售.乙超市的銷售方案是:不將蘋果按大小分類,直接包裝銷售,價(jià)格按甲超市大、小兩種蘋果售價(jià)的平均數(shù)定價(jià).若兩超市將蘋果全部售完,其中甲超市獲利2100元(其它成本不計(jì)).問:

(1)蘋果進(jìn)價(jià)為每千克多少元?

(2)乙超市獲利多少元?并比較哪種銷售方式更合算.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】△ABC中,BC=a AB=c,AC=b,則不能作為判定△ABC是直角三角形的條件的是(

A.B.A∶∠B∶∠C=1∶4∶3

C.abc =7∶24∶25D.abc =4∶5∶6

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】通過學(xué)習(xí)三角函數(shù),我們知道在直角三角形中,一個(gè)銳角的大小與兩條邊長的比值相互唯一確定,因此邊長與角的大小之間可以相互轉(zhuǎn)化.類似地,可以在等腰三角形中建立邊角之間的關(guān)系.我們定義:等腰三角形中底邊與腰的比叫做頂角的正對(sad)如圖1,在ABC中,AB=AC,頂角A的正對記作sadA,這時(shí)sad.容易知道一個(gè)角的大小與這個(gè)角的正對值也是相互唯一確定的。根據(jù)上述角的正對定義,解答下列問題:

1sad=

2)對于A,A的正對值sadA的取值范圍 ;

3如圖2,已知sinA=,其中∠A為銳角,試求sadA的值。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在中,,.動(dòng)點(diǎn)分別從點(diǎn)、點(diǎn)同時(shí)出發(fā),相向而行,速度都為.以為一邊向上作正方形,過點(diǎn),交于點(diǎn).設(shè)運(yùn)動(dòng)時(shí)間為,單位:,正方形和梯形重合部分的面積為

當(dāng)時(shí),點(diǎn)與點(diǎn)重合.

當(dāng)時(shí),點(diǎn)上.

當(dāng)點(diǎn),兩點(diǎn)之間(不包括兩點(diǎn))時(shí),求之間的函數(shù)表達(dá)式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】 如圖,已知△ABC為等邊三角形,D、E分別為BC、AC邊上的兩動(dòng)點(diǎn)(與點(diǎn)A、B、C不重合),且總使CD = AE,ADBE相交于點(diǎn)F

1)求證:AD = BE

2)求∠BFD的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AB是⊙D的直徑,AD切⊙D于點(diǎn)A,EC=CB.則下列結(jié)論:①BA⊥DA;②OC∥AE;③∠COE=2∠CAE;④OD⊥AC.一定正確的個(gè)數(shù)有( 。

A. 4個(gè) B. 3個(gè) C. 2個(gè) D. 1個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某商店以40/千克的單價(jià)新進(jìn)一批茶葉,經(jīng)調(diào)查發(fā)現(xiàn),在一段時(shí)間內(nèi),銷售量y (千克)與銷售單價(jià)x (/千克)之間的函數(shù)關(guān)系如圖所示.

(1)根據(jù)圖象,求yx的函數(shù)表達(dá)式;

(2)當(dāng)銷售單價(jià)為80/千克時(shí),商店的利潤是多少?

查看答案和解析>>

同步練習(xí)冊答案