已知拋物線y=kx2+2kx-3k,交x軸于A、B兩點(diǎn)(A在B的左邊),交y軸于C點(diǎn),且y有最大值4.
(1)求拋物線的解析式;
(2)在拋物線上是否存在點(diǎn)P,使△PBC是直角三角形?若存在,求出P點(diǎn)坐標(biāo);若不存在,說明理由.
(1)∵y有最大值4,
∴y=kx2+2kx-3k=k(x+1)2-4k,
∴-4k=4,
解得k=-1,
∴y=-x2-2x+3,
答:拋物線的解析式是y=-x2-2x+3.

(2)根據(jù)直角的可能性分三種情況:
①當(dāng)∠C=90°時(shí),作PC⊥BC交拋物線于P點(diǎn),并做PD⊥y軸于D點(diǎn),
設(shè)P(x,-x2-2x+3),
∵△OBC△DCP,
CO
BO
=
DP
CD

3
1
=
-x
3-(-x2-2x+3)
,
∴x1=0(舍去),x2=-
7
3
,
P(-
7
3
20
9
)
;
②當(dāng)∠B=90°時(shí),作PB⊥BC交拋物線于P點(diǎn),并作PE⊥x軸于點(diǎn)E,
設(shè)P(x,-x2-2x+3),
∵△OBC△EPB,
CO
BO
=
EB
EP
,
3
1
=
1-x
-(-x2-2x+3)

∴x1=1(舍去),x2=-
10
3
,
P(-
10
3
,-
13
9
)

③當(dāng)∠P=90°時(shí),點(diǎn)P應(yīng)在以BC為直徑的圓周上,
如圖,與拋物線無交點(diǎn),故不存在,
綜上所述,這樣的點(diǎn)P有兩個:P1(-
7
3
,
20
9
)
,P2(-
10
3
,-
13
9
),
答:在拋物線上存在點(diǎn)P,使△PBC是直角三角形,P點(diǎn)坐標(biāo)是(-
7
3
,
20
9
)或(-
10
3
,-
13
9
).
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,已知二次函數(shù)y=-x2+bx+c(c>0)的圖象與x軸交于A、B兩點(diǎn)(點(diǎn)A在點(diǎn)B的左側(cè)),與y軸交于點(diǎn)C,且OB=OC=3,頂點(diǎn)為M.
(1)求二次函數(shù)的解析式;
(2)點(diǎn)P為線段BM上的一個動點(diǎn),過點(diǎn)P作x軸的垂線PQ,垂足為Q,若OQ=m,四邊形ACPQ的面積為S,求S關(guān)于m的函數(shù)解析式,并寫出m的取值范圍;
(3)探索:線段BM上是否存在點(diǎn)N,使△NMC為等腰三角形?如果存在,求出點(diǎn)N的坐標(biāo);如果不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,已知直線y=x與拋物線y=
1
2
x2
交于A、B兩點(diǎn).
(1)求交點(diǎn)A、B的坐標(biāo);
(2)記一次函數(shù)y=x的函數(shù)值為y1,二次函數(shù)y=
1
2
x2
的函數(shù)值為y2.若y1>y2,求x的取值范圍;
(3)在該拋物線上存在幾個點(diǎn),使得每個點(diǎn)與AB構(gòu)成的三角形為等腰三角形?并求出不少于3個滿足條件的點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,拋物線:y=
1
2
x2+bx+c
與x軸交于A、B(A在B左側(cè)),頂點(diǎn)為C(1,-2),
(1)求此拋物線的關(guān)系式;并直接寫出點(diǎn)A、B的坐標(biāo).
(2)求過A、B、C三點(diǎn)的圓的半徑.
(3)在拋物線上找點(diǎn)P,在y軸上找點(diǎn)E,使以A、B、P、E為頂點(diǎn)的四邊形是平行四邊形,求點(diǎn)P、E的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,拋物線y=ax2+bx(a>0)與雙曲線y=
k
x
相交于點(diǎn)A,B.已知點(diǎn)A的坐標(biāo)為(1,4),點(diǎn)B在第三象限內(nèi),連結(jié)AB交y軸于點(diǎn)E,且S△BOE=
2
3
S△AOB(O為坐標(biāo)原點(diǎn)).
(1)求此拋物線的函數(shù)關(guān)系式;
(2)過點(diǎn)A作直線平行于x軸交拋物線于另一點(diǎn)C.問在y軸上是否存在點(diǎn)P,使△POC與△OBE相似,若存在,求出點(diǎn)P的坐標(biāo);若不存在,請簡要說明理由;
(3)拋物線與x軸的負(fù)半軸交于點(diǎn)D,過點(diǎn)B作直線ly軸,點(diǎn)Q在直線l上運(yùn)動,且點(diǎn)Q的縱坐標(biāo)為t,試探索:當(dāng)S△AOB<S△QOD<S△BOC時(shí),求t的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

已知:如圖,把矩形OCBA放置于直角坐標(biāo)系中,OC=3,BC=2,取AB的中點(diǎn)M,連結(jié)MC,把△MBC沿x軸的負(fù)方向平移OC的長度后得到△DAO.
(1)直接寫出點(diǎn)D的坐標(biāo);
(2)已知點(diǎn)B與點(diǎn)D在經(jīng)過原點(diǎn)的拋物線上,點(diǎn)P在第一象限內(nèi)的該拋物線上移動,過點(diǎn)P作PQ⊥x軸于點(diǎn)Q,連結(jié)OP.若以O(shè)、P、Q為頂點(diǎn)的三角形與△DAO相似,試求出點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

(個008•棗莊)在直角坐標(biāo)平面中,O為坐標(biāo)原點(diǎn),二次函數(shù)y=-x+(k-1)x+4的圖象與y軸交于點(diǎn)A,與x軸的負(fù)半軸交于點(diǎn)B,且S△OAB=a.
(1)求點(diǎn)A與點(diǎn)B的坐標(biāo);
(個)求此二次函數(shù)的解析式;
(3)如果點(diǎn)d在x軸上,且△ABd是等腰三角形,求點(diǎn)d的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

在△ABC中,∠ACB=90°,點(diǎn)A的坐標(biāo)為(0,2),點(diǎn)B(-3,1)在拋物線y=ax2+ax-2上,點(diǎn)C在x軸上.
(1)求a的值;
(2)求點(diǎn)C的坐標(biāo);
(3)若△ABC是等腰直角三角形
①如圖1,將△ABC繞頂點(diǎn)A逆時(shí)針方向旋轉(zhuǎn)β°(0<β<180°)得到△AB′C′,當(dāng)點(diǎn)C′(2,1)恰好落在該拋物線上,請你通過計(jì)算說明點(diǎn)B′也在該拋物線上.
②如圖2,設(shè)拋物線與y軸的交點(diǎn)為D、P、Q兩點(diǎn)同時(shí)從D點(diǎn)出發(fā),點(diǎn)P沿折線D→C→B運(yùn)動到點(diǎn)B,點(diǎn)Q沿拋物線(在第二、三象限的部分)運(yùn)動到點(diǎn)B,若P、Q兩點(diǎn)的運(yùn)動速度相同,請問誰先到達(dá)點(diǎn)B,為什么?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,在平面直角坐標(biāo)系xOy中,把矩形COAB繞點(diǎn)C順時(shí)針旋轉(zhuǎn)α角,得到矩形CFED.設(shè)FC與AB交于點(diǎn)H,且A(0,4),C(6,0)(如圖1).
(1)當(dāng)α=60°時(shí),△CBD的形狀是______;
(2)當(dāng)AH=HC時(shí),求直線FC的解析式;
(3)當(dāng)α=90°時(shí),(如圖2).請?zhí)骄浚航?jīng)過點(diǎn)D,且以點(diǎn)B為頂點(diǎn)的拋物線,是否經(jīng)過矩形CFED的對稱中心M,并說明理由.

查看答案和解析>>

同步練習(xí)冊答案