【題目】如圖,點分別是邊長為2的正六邊形中不相鄰三條邊的中點,則的周長為(

A.6B.C.D.9

【答案】D

【解析】

由題意得∠ABM=120°,ABMP,從而得∠BMC=APD=60°,作ADPM于點D,作BCPM于點C,得四邊形ABCD是矩形,進而得PM=CD+ MC+PD=3,即可求解.

∵點分別是邊長為2的正六邊形中不相鄰三條邊的中點,

∴∠ABM=120°,ABMP,

∴∠BMC=APD=60°,

ADPM于點D,作BCPM于點C

MC=PD=BM=AB=×2=,BCAD,

∴四邊形ABCD是平行四邊形,

又∵∠BCD=90°,

∴四邊形ABCD是矩形,

CD=AB,

PM=CD+ MC+PD=2++=3,

的周長為:9

故選D

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某中學(xué)現(xiàn)有在校學(xué)生 1250 人,為了解本校學(xué)生的課余活動情況,采取隨機抽樣的方法從閱讀、運動、娛樂、其它四個方面調(diào)查了若干名學(xué)生,并將調(diào)查的結(jié)果繪制了 如下兩幅不完整的統(tǒng)計圖,請你根據(jù)圖中提供的信息解答下列問題:

1)本次調(diào)査共取了多少名學(xué)生?

2)通過計算補全條形圖,并求出扇形統(tǒng)計圖中閱讀部分圓心角的度數(shù);

3)請你估計該中學(xué)在課余時間參加閱讀和其他活動的學(xué)生一共有多少名

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在Rt△ABC中,∠BAC=90°,D、E分別是AB、BC的中點,FCA延長線上,∠FDA=∠B,AC=6,AB=8,則四邊形AEDF的周長為( 。

A. 16 B. 20 C. 18 D. 22

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(1)、問題:如圖1,在四邊形ABCD中,點PAB上一點,∠DPC=A=B=90°.求證:AD·BC=AP·BP

(2)、探究:如圖2,在四邊形ABCD中,點PAB上一點,當(dāng)∠DPC=A=B=θ時,上述結(jié)論是否依然成立?說明理由.

(3)、應(yīng)用:請利用(1)(2)獲得的經(jīng)驗解決問題:

如圖3,在ABD中,AB=6AD=BD=5.點P以每秒1個單位長度的速度,由點A 出發(fā),沿邊AB向點B運動,且滿足∠DPC=A.設(shè)點P的運動時間為t(秒),當(dāng)DC的長與ABD底邊上的高相等時,求t的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某市教育局為了了解該市九年級學(xué)生參加社會實踐活動情況,隨機抽查了某縣部分九年級學(xué)生第一學(xué)期參加社會實踐活動的天數(shù),并用得到的數(shù)據(jù)繪制了兩幅統(tǒng)計圖,下面給出了兩幅不完整的統(tǒng)計圖.

請根據(jù)圖中提供的信息,回答下列問題:

1________%,并寫出該扇形所對圓心角的度數(shù)為________,請補全條形圖;

2)在這次抽樣調(diào)查中,眾數(shù)和中位數(shù)分別是多少?

3)若該縣共有九年級學(xué)生2000人,請你估計“活動時間不少于7天”的學(xué)生人數(shù)大約有多少人?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,點,四邊形是正方形,作直線與正方形邊所在直線相交于

1)若直線經(jīng)過點,求的值;

2)若直線平分正方形的面積,求的坐標(biāo);

3)若的外心在其內(nèi)部,直接寫出的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知RtOAB,∠OAB=90o,∠ABO=30o,斜邊OB=4,將RtOAB繞點O順時針旋轉(zhuǎn)60o,如圖1,連接BC

(1)ΔOBC的形狀是 ;

(2)如圖1,連接AC,作OPAC,垂足為P,求OP的長度;

(3)如圖2,點M、N同時從點O出發(fā),在△OCB邊上運動,M沿OCB路徑勻速運動,N沿OBC路徑勻速運動,當(dāng)兩點相遇時運動停止.已知點M的運動速度為1.5單位/秒,點N的運動速度為1單位/.設(shè)運動時間為x秒,△OMN的面積為y,求當(dāng)x為何值時y取得最大值?最大值為多少?(結(jié)果可保留根號)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,拋物線y=ax2+bx+2經(jīng)過點A(1,0)和點B(4,0),且與y軸交于點C,點D的坐標(biāo)為(2,0),點P(mn)是該拋物線上的一個動點,連接CA,CD,PDPB

(1)求該拋物線的解析式;

(2)當(dāng)△PDB的面積等于△CAD的面積時,求點P的坐標(biāo);

(3)當(dāng)m0,n0時,過點P作直線PEy軸于點E交直線BC于點F,過點FFGx軸于點G,連接EG,請直接寫出隨著點P的運動,線段EG的最小值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在銳角ABC中,邊BC長為18,高AD長為12

1)如圖,矩形EFCH的邊GHBC邊上,其余兩個頂點EF分別在AB、AC邊上,EFAD于點K,求的值;

2)設(shè)EHx,矩形EFGH的面積為S,求Sx的函數(shù)關(guān)系式,并求S的最大值.

查看答案和解析>>

同步練習(xí)冊答案