【題目】如圖,A,B兩點分別表示兩幢大樓所在的位置,直線a表示輸水總管道,直線b表示輸煤氣總管道.現(xiàn)要在這兩根總管道上分別設(shè)一個連接點,安裝分管道將水和煤氣輸送到A,B兩幢大樓,要求使鋪設(shè)至兩幢大樓的輸水分管道和輸煤氣分管道的用料最短.圖中,點A'是點A關(guān)于直線b的對稱點,A'B分別交直線b,a于點C,D;點B'是點B關(guān)于直線a的對稱點,B'A分別交直線b,a于點E,F.則符合要求的輸水和輸煤氣分管道的連接點依次是

A. F和C B. F和E C. D和C D. D和E

【答案】A

【解析】

本題要明確輸水和輸煤氣分管道應(yīng)建在何處,點B關(guān)于a的對稱點B′,則線段B′Aa的交點就是應(yīng)建的輸水分管道的連接點位置.點A關(guān)于b的對稱點A′,則線段A′Bb的交點就是應(yīng)建的煤氣分管道的連接點位置.

解:由軸對稱--最短路線的要求可知:
輸水分管道的連接點是點B關(guān)于a的對稱點B′A的連線的交點F
煤氣分管道的連接點是點A關(guān)于b的對稱點A′B的連線的交點C
故選:A

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在中,,,,于點.下列結(jié)論正確的個數(shù)為()個

;②;③;④;⑤.

A.1B.2C.3D.4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,將△ABC的一角折疊,使點C落在△ABC內(nèi)一點

1)若∠1=40°,∠2=30°,求∠C的度數(shù);(2)試通過第(1)問,直接寫出∠1、∠2、∠C三者之間的關(guān)系.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,等邊△ABC的邊長是2D、E分別為AB、AC的中點,延長BC至點F,使CF=BC,連接CDEF

1)求證:DE=CF;

2)求EF的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】解不等式組 ,并寫出該不等式組的整數(shù)解.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在長度為1個單位長度的小正方形組成的正方形網(wǎng)格中,△ABC的三個頂點A、BC都在格點上.

1)在圖中畫出與△ABC關(guān)于直線l成軸對稱的△A1B1C1;

2)在直線l上找出一點P,使得|PAPC|的值最大;(保留作圖痕跡并標上字母P

3)在直線l上找出一點Q,使得QA+QC1的值最。唬ūA糇鲌D痕跡并標上字母Q

4)在正方形網(wǎng)格中存在   個格點,使得該格點與B、C兩點構(gòu)成以BC為底邊的等腰三角形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在△ABC中,AB=AC=5,cos∠ABC=0.6,將△ABC繞點C順時針旋轉(zhuǎn),得到△A1B1C.
(1)如圖1,當(dāng)點B1在線段BA延長線上時.①求證:BB1∥CA1;②求△AB1C的面積;

(2)如圖2,點E是BC邊的中點,點F為線段AB上的動點,在△ABC繞點C順時針旋轉(zhuǎn)過程中,點F的對應(yīng)點是F1 , 求線段EF1長度的最大值與最小值的差.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某中學(xué)為打造書香校園,計劃購進甲、乙兩種規(guī)格的書柜放置新購進的圖書,調(diào)查發(fā)現(xiàn),若購買甲種書柜3個、乙種書柜2個,共需資金1020元;若購買甲種書柜4個,乙種書柜3個,共需資金1440元.

(1)甲、乙兩種書柜每個的價格分別是多少元?

(2)若該校計劃購進這兩種規(guī)格的書柜共20個,其中乙種書柜的數(shù)量不少于甲種書柜的數(shù)量,學(xué)校至多能夠提供資金4320元,請設(shè)計幾種購買方案供這個學(xué)校選擇.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】8分)某市在道路改造過程中,需要鋪設(shè)一條長為1000米的管道,決定由甲、乙兩個工程隊來完成這一工程.已知甲工程隊比乙工程隊每天能多鋪設(shè)20米,且甲工程隊鋪設(shè)350米所用的天數(shù)與乙工程隊鋪設(shè)250米所用的天數(shù)相同.

(1)甲、乙工程隊每天各能鋪設(shè)多少米?

(2)如果要求完成該項工程的工期不超過10天,那么為兩工程隊分配工程量(以百米為單位)的方案有幾種?請你幫助設(shè)計出來.

查看答案和解析>>

同步練習(xí)冊答案