【題目】如圖1,點在線段上,圖中共有三條線段,,若其中有一條線段的長度是另外一條線段長度的2倍,則稱點是線段巧點”.

(1)線段的中點_________這條線段的巧點(不是”);

(2)如圖2,已知.動點從點出發(fā),以的速度沿向點勻速運動;點從點出發(fā),以的速度沿向點勻速運動,點,同時出發(fā),當其中一點到達終點時,運動停止.設移動的時間為,當_________時,巧點”.

【答案】 7.5

【解析】

1)根據(jù)巧點的定義即可求解;

2)當QA、P的巧點時,分①當AP=2AQ時②當PQ=2AQ時③當AQ=2PQ時三種情況進行討論求解即可.

(1)若線段中點為點,,所以中點是這條線段巧點

故答案為:是

(2) t秒后,AP=2t,AQ=15-t0≤t≤7.5
QA、P的巧點時,
①當AP=2AQ時,即(15t22t,解得t7.5s;

②當PQ=2AQ時,AQ=AP,即15t2t,解得t9s7.5s,故舍去;
③當AQ=2PQ時,AQ=AP,即15t2t,解得t=s
綜上所述:t7.5ss

故答案為:t7.5

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】一個尋寶游戲的尋寶通道如圖①所示,通道由在同一平面內(nèi)的AB,BC,CA,OA, OB,OC組成。為記錄尋寶者的行進路線,在BC的中點M處放置了一臺定位儀器,設尋寶者行進的時間為x,尋寶者與定位儀器之間的距離為y,若尋寶者勻速行進,且表示y與x的函數(shù)關系的圖像大致如圖②所示,則尋寶者的行進路線可能為:

A. A→O→B B. B→A→C C. B→O→C D. C→B→O

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,中,分別是的中點.

求證:四邊形是菱形

如果,求四邊形的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,點是菱形邊上的一個動點,點從點出發(fā),沿的方向勻速運動到停止,過點垂直直線于點,已知,設點走過的路程為,點到直線的距離為(當點與點或點重合時,的值為

小騰根據(jù)學習函數(shù)的經(jīng)驗,對函數(shù)隨自變量的變化規(guī)律進行了探究,下面是小騰的探究過程,請補充完整;

1)按照下表中自變量的值進行取點,畫圖,測量,分別得到了以下幾組對應值;

2)在同一平面直角坐標系中,描出補全后的表中各組數(shù)值所對應的點,并畫出函數(shù)的圖像;

3)結合函數(shù)圖像,解決問題,當點到直線的距離恰為點走過的路程的一半時,點P走過的路程約是

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖甲,有兩個形狀完全相同的直角三角形ABC和EFG疊放在一起點A與點E重合),已知AC8 cm,BC6 cm,∠C90°,EG4 cm,∠EGF90°,O是△EFG斜邊上的中點. 如圖乙,若整個△EFG從圖甲的位置出發(fā)以1 cm/s的速度沿射線AB方向平移,在△EFG平移的同時,點P從△EFG的頂點G出發(fā),以1 cm/s的速度在直角邊GF上向點F運動當點P到達點F時,點P停止運動△EFG也隨之停止平移. 設運動時間為x(s),FG的延長線交AC于H,四邊形OAHP的面積為y(cm2)(提示:不考慮點P與G、F重合的情況).

(1)當x為何值時,OP∥AC?

(2)求y與x之間的函數(shù)關系式,并確定自變量x的取值范圍

(3)是否存在某一時刻,使四邊形OAHP面積與△ABC面積的比為?若存在,求出x的值;若不存在說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,拋物線y=ax2+bx+c經(jīng)過點A(﹣3,0),B(0,3),C(1,0).

(1)求此拋物線的解析式.

(2)點P是直線AB上方的拋物線上一動點,(不與點A、B重合),過點P作x軸的垂線,垂足為F,交直線AB于點E,作PDAB于點D.

動點P在什么位置時,PDE的周長最大,求出此時P點的坐標;

連接PA,以AP為邊作圖示一側的正方形APMN,隨著點P的運動,正方形的大小、位置也隨之改變.

當頂點M或N恰好落在拋物線對稱軸上時,求出對應的P點的坐標.(結果保留根號)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,平面直角坐標系中,矩形的邊、分別落在軸上,點坐標為,反比例函數(shù)的圖象與邊交于點,與邊交于點,連結,將沿翻折至處,點恰好落在正比例函數(shù)圖象上,則的值是

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在△ABC中,∠ACB=90°,點D,E分別是邊BC,AB上的中點,連接DE并延長至點F,使EF=2DF,連接CE、AF.

(1)證明:AF=CE;

(2)當∠B=30°時,試判斷四邊形ACEF的形狀并說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】閱讀下列材料:

問題:如圖1,在平行四邊形ABCD,EAD上一點,AE=AB,∠EAB=60°,過點E作直線EF,在EF上取一點G.使得∠EGB=∠EAB,連接AG.

求證:EG=AG+BG.

小明同學的思路是:作∠CAM=∠EABCE于點H,構造全等三角形,經(jīng)過推理解決問題.

參考小明同學的思路,探究并解決下列問題:

(1)完成上面問題中的證明;

(2)如果將原問題中的“∠EAB=60°”改為“∠EAB=90°”,原問題中的其它條件不變(如圖2),請?zhí)骄烤段EC、AG、BG之間的數(shù)量關系,并證明你的結論.

:線段EG、AGBG之間的數(shù)量關系為___________________________________________________.證明:

查看答案和解析>>

同步練習冊答案