【題目】已知AB是⊙O的直徑,弦CDAB相交,BAC=38°

1)如圖①,若D為弧AB的中點,求∠ABC和∠ABD的大;

2)如圖②,過點D作⊙O的切線,與AB的延長線交于點P,若DPAC,求∠OCD的大。

【答案】(1)∠ABC=52°,∠ABD=45°;(2)∠OCD=26°.

【解析】

(1)根據(jù)圓周角和圓心角的關(guān)系和圖形可以求得∠ABC和∠ABD的大小

(2)根據(jù)題意和平行線的性質(zhì)、切線的性質(zhì)可以求得∠OCD的大小

1)∵ABO的直徑,CDAB相交,∠BAC=38°,∴∠ACB=90°,∴∠ABC=∠ACB﹣∠BAC=90°﹣38°=52°.

D的中點,∠AOB=180°,∴∠AOD=90°,∴∠ABD=45°;

(2)連接OD

DPO于點D,∴ODDP,即∠ODP=90°,DPAC,又∠BAC=38°,∴∠P=∠BAC=38°.

∵∠AOD是△ODP的一個外角,∴∠AOD=∠P+∠ODP=128°,∴∠ACD=64°.

OCOA,∠BAC=38°,∴∠OCA=∠BAC=38°,∴∠OCD=∠ACD﹣∠OCA=64°﹣38°=26°.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,二次函數(shù) y=ax2﹣2ax+c(a>0)的圖象與 x 軸的負半軸和正半軸分別交于 A、B 兩點,與 y 軸交于點 C,它的頂點為 P,直線 CP 與過點B 且垂直于 x 軸的直線交于點 D,且 CP:PD=1:2,tan∠PDB=

(1) A、B 兩點的坐標分別為 A( ); B( );

(2)求這個二次函數(shù)的解析式;

(3)在拋物線的對稱軸上找一點M 使|MC﹣MB|的值最大,則點M 的坐標為

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,點P為△ABC的內(nèi)心,延長AP交△ABC的外接圓OD,過DDEBC,交AC的延長線于E點.則直線DEO的位置關(guān)系是_____AB=4,AD=6,CE=3,則DE_____

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】韋達定理:若一元二次方程ax2+bx+c=0(a≠0)的兩根分別為x1、x2x1+x2=﹣ , x1x2=閱讀下面應(yīng)用韋達定理的過程:

若一元二次方程﹣2x2+4x+1=0的兩根分別為x1、x2 , x12+x22的值.

解:該一元二次方程的△=b2﹣4ac=42﹣4×(﹣2)×1=24>0

由韋達定理可得,x1+x2=﹣=﹣=2,x1x2===﹣

x12+x22=(x1+x22﹣2x1x2

=22﹣2×(﹣

=5

然后解答下列問題:

(1)設(shè)一元二次方程2x2+3x﹣1=0的兩根分別為x1,x2, 不解方程,求x12+x22的值;

(2)若關(guān)于x的一元二次方程(k﹣1)x2+(k2﹣1)x+(k﹣1)2=0的兩根分別為α,β,且α22=4,求k的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,有一個可以自由轉(zhuǎn)動的轉(zhuǎn)盤,被均勻分成等份,分別標上、、、五個數(shù)字.甲乙兩人玩一個游戲,其規(guī)則如下:任意轉(zhuǎn)動轉(zhuǎn)盤一次,轉(zhuǎn)盤停止后,指針指向一個數(shù)字,如果所得的數(shù)字是偶數(shù),則甲勝;如果所得的數(shù)字是奇數(shù),則乙勝.

(1)轉(zhuǎn)出的數(shù)字是的概率是________

(2)轉(zhuǎn)出的數(shù)字不大于的概率是________

(3)轉(zhuǎn)出的數(shù)字是偶數(shù)的概率是________

(4)你認為這樣的游戲規(guī)則對甲、乙兩人是否公平?為什么?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某商店分兩次購進、兩種商品進行銷售,兩次購進同一種商品的進價相同,具體情況如下表所示:

購進數(shù)量

購進所需費用(元)

第一次

30

40

3800

第二次

40

30

3200

1)求、兩種商品每件的進價分別是多少元?

2)商場決定種商品以每件30元出售,種商品以每件100元出售.為滿足市場需求,需購進、兩種商品共1000件,且種商品的數(shù)量不少于種商品數(shù)量的4倍,設(shè)購進種商品件,獲得的利潤為元,

①請列出的函數(shù)關(guān)系式

②求出獲利最大的進貨方案,并確定最大利潤.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,正方形ABCD中,AB=6,點E在邊CD上,且CD=3DE.將△ADE沿AE對折至△AFE,延長EF交邊BC于點G,連接AG、CF.則下列結(jié)論:①△ABG≌△AFG②BG=CG③AG∥CF④S△FGC=3⑤∠AGB+∠AED=135°.其中正確的個數(shù)是(  )

A. 2 B. 3 C. 4 D. 5

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知:如圖,在平行四邊形ABCD中,E、F分別為邊AB、CD的中點,BD是對角線,AG∥DBCB的延長線于G.

(1)求證:△CDB≌△BAG.

(2)如果四邊形BFDE是菱形,那么四邊形AGBD是什么特殊四邊形?并證明你的結(jié)論.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】(本小題滿分10分)如圖,一次函數(shù)的圖象與反比例函數(shù)為常數(shù),且)的圖象交于A1a)、B兩點.

1)求反比例函數(shù)的表達式及點B的坐標;

2)在x軸上找一點P,使PA+PB的值最小,求滿足條件的點P的坐標及△PAB的面積.

查看答案和解析>>

同步練習冊答案