【題目】已知

(1)如圖①,當平分時,求證: 平分;

(2)如圖②,移動直角頂點,使,求證:

【答案】證明見解析.

【解析】試題分析:1CE平分∠ACD可得出∠ACE=ECD,因為∠AEC=90°,所以∠EAC+ACE=90°,所以∠EAC+ECD=90°,又因為ABCD,所以∠BAC+ACD=180°,所以∠BAE+ECD=90°,所以∠EAC=BAEAE平分∠BAC;(2)延長AEDG于點F

由∠MCE=ECF,MEC=FEC=90°結合三角形內角和可得出∠CME=CFE,進而得出∠MCG=2EFC,又因為ABCD,所以∠BAE=EFC,所以∠MCG=2BAE.

試題解析:

1CE平分∠ACD,

∴∠ACE=ECD,

∵∠AEC=90°,

∴∠EAC+ACE=90°,

∴∠EAC+ECD=90°,

ABCD,

∴∠BAC+ACD=180°,

∴∠BAE+ECD=90°,

∴∠EAC=BAE

AE平分∠BAC;

2延長AEDG于點F,

∵∠MCE=ECF,MEC=FEC=90°,

∴∠CME=CFE,

∴∠MCG=2EFC,

ABCD,

∴∠BAE=EFC,

∵∠MCG=2BAE.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】三個連續(xù)正整數(shù)的和不大于12.這樣的正整數(shù)有__________組.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,AC和BD相交于O點,若OA=OD,用“SAS”證明△AOB≌△DOC還需(
A.AB=DC
B.OB=OC
C.∠C=∠D
D.∠AOB=∠DOC

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在△ABC中,AB=20cm,AC=12cm,點P從點B出發(fā)以每秒3cm速度向點A運動,點Q從點A同時出發(fā)以每秒2cm速度向點C運動,其中一個動點到達端點,另一個動點也隨之停止,當△APQ是以PQ為底的等腰三角形時,運動的時間是秒.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知△ABC的周長是21,OB,OC分別平分∠ABC和∠ACB,OD⊥BC于,且OD=4,△ABC的面積是(
A.25
B.84
C.42
D.21

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知,

(1)如圖①,當平分時,求證: 平分;

(2)如圖②,移動直角頂點,使,求證:

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】婷婷在計算一個二項式的平方時,得到的正確結果是9x2+24xy+■,但最后一項不慎被污染了,這一項應是( 。

A.16y2B.8y2C.4y2D.±16y2

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知ab=4,ab=3,則代數(shù)式(a+2)(b+2)的值是(   )

A. 7 B. 9 C. 11 D. 15

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】分解因式:a3a   

查看答案和解析>>

同步練習冊答案