【題目】如圖,在正方形網(wǎng)格中,每個(gè)小正方形的邊長是個(gè)單位長度,以點(diǎn)為位似中心,在網(wǎng)格中畫,使與位似,且與的位似比為,則點(diǎn)的坐標(biāo)可以為( )
A.B.C.D.
【答案】B
【解析】
利用位似性質(zhì)和網(wǎng)格特點(diǎn),延長CA到A1,使CA1=2CA,延長CB到B1,使CB1=2CB,則△A1B1C1滿足條件;或延長AC到A1,使CA1=2CA,延長BC到B1,使CB1=2CB,則△A1B1C1也滿足條件,然后寫出點(diǎn)B1的坐標(biāo).
解:由圖可知,點(diǎn)B的坐標(biāo)為(3,-2),
如圖,以點(diǎn)C為位似中心,在網(wǎng)格中畫△A1B1C1,使△A1B1C1與△ABC位似,且△A1B1C1與△ABC的位似比為2:1,
則點(diǎn)B1的坐標(biāo)為(4,0)或(-8,0),位于題目圖中網(wǎng)格點(diǎn)內(nèi)的是(4,0),
故選:B.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】有甲、乙兩個(gè)不透明的布袋,甲袋中有3個(gè)完全相同的小球,分別標(biāo)有數(shù)字0,1和2;乙袋中有3個(gè)完全相同的小球,分別標(biāo)有數(shù)字1,2和3,小明從甲袋中隨機(jī)取出1個(gè)小球,記錄標(biāo)有的數(shù)字為x,再從乙袋中隨機(jī)取出1個(gè)小球,記錄標(biāo)有的數(shù)字為y,這樣確定了點(diǎn)M的坐標(biāo)(x,y).
(1)寫出點(diǎn)M所有可能的坐標(biāo);
(2)求點(diǎn)M在直線上的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,一次函數(shù)y=kx+b(k≠0)的圖象與反比例函數(shù)的圖象交于點(diǎn)C(n,3),與x軸、y軸分別交于點(diǎn)A、B,過點(diǎn)C作CM⊥x軸,垂足為M.若,OA=2.
(1)求反比例函數(shù)和一次函數(shù)的解析式;
(2)當(dāng)kx+b﹣>0時(shí),求x的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,BD為△ABC外接圓⊙O的直徑,且∠BAE=∠C.
(1)求證:AE與⊙O相切于點(diǎn)A;
(2)若AE∥BC,BC=2,AC=2,求AD的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】甲、乙兩商場(chǎng)以同樣價(jià)格出售同樣的商品:并且又各自推出不同的優(yōu)惠方案,在甲商場(chǎng)累計(jì)購物超過100元后,超出100元的部分按收費(fèi);在乙商場(chǎng)累計(jì)購物超過50元后,超出50元的部分按收費(fèi).顧客到哪家商場(chǎng)購物花費(fèi)少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】△ABC中,AB=AC,D為BC的中點(diǎn),以D為頂點(diǎn)作∠MDN=∠B,
(1)如圖(1)當(dāng)射線DN經(jīng)過點(diǎn)A時(shí),DM交AC邊于點(diǎn)E,不添加輔助線,寫出圖中所有與△ADE相似的三角形.
(2)如圖(2),將∠MDN繞點(diǎn)D沿逆時(shí)針方向旋轉(zhuǎn),DM,DN分別交線段AC,AB于E,F點(diǎn)(點(diǎn)E與點(diǎn)A不重合),不添加輔助線,寫出圖中所有的相似三角形,并證明你的結(jié)論.
(3)在圖(2)中,若AB=AC=10,BC=12,當(dāng)△DEF的面積等于△ABC的面積的時(shí),求線段EF的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,一次函數(shù)(a≠0)的圖象與反比例函數(shù)的圖象交于第二、第四象限內(nèi)的A、B兩點(diǎn),與軸交于點(diǎn)C,過點(diǎn)A作AH⊥軸,垂足為點(diǎn)H,OH=3,tan∠AOH=,點(diǎn)B的坐標(biāo)為(,-2).
(1)求該反比例函數(shù)和一次函數(shù)的解析式;
(2)求△AHO的周長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,∠ACB=90°,以斜邊AB上一點(diǎn)O為圓心,OB為半徑作⊙O,交AC于點(diǎn)E,交AB于點(diǎn)D,且∠BEC=∠BDE.
(1)求證:AC是⊙O的切線;
(2)連接OC交BE于點(diǎn)F,若,求的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】頂點(diǎn)為D的拋物線y=﹣x2+bx+c交x軸于A、B(3,0),交y軸于點(diǎn)C,直線y=﹣x+m經(jīng)過點(diǎn)C,交x軸于E(4,0).
(1)求出拋物線的解析式;
(2)如圖1,點(diǎn)M為線段BD上不與B、D重合的一個(gè)動(dòng)點(diǎn),過點(diǎn)M作x軸的垂線,垂足為N,設(shè)點(diǎn)M的橫坐標(biāo)為x,四邊形OCMN的面積為S,求S與x之間的函數(shù)關(guān)系式,并求S的最大值;
(3)點(diǎn)P為x軸的正半軸上一個(gè)動(dòng)點(diǎn),過P作x軸的垂線,交直線y=﹣x+m于G,交拋物線于H,連接CH,將△CGH沿CH翻折,若點(diǎn)G的對(duì)應(yīng)點(diǎn)F恰好落在y軸上時(shí),請(qǐng)直接寫出點(diǎn)P的坐標(biāo).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com